干货丨 一文详解SGAT单基因关联分析工具(二)

简介: 干货丨 一文详解SGAT单基因关联分析工具(二)

具体操作步骤

加载R包与数据

library(tidyverse)
chr_ref <- read.table("01_scripts/chr_num2str.txt",header = T)
df <- read_table(paste0("04_hmp/gene_",job,".hmp.txt"),show_col_types = F)
trait <- read_table(paste0("05_trait/","trait.txt"),show_col_types = F)

读取三个数据文件,其中第一个是染色体ID个不同格式对应信息,第二个是基因型hmp.txt文件,第三个是表型数据文件。

染色体格式转换

  • chr_id_translate 函数
chr_id_translate <- function(data,type){
  # 输入俩参,一为原始数据,二为类型
  if (type == "1_to_chr1A"){
    # 数字转字符型
    old_id <- as.character(data)
    for (k in 1:nrow(chr_ref)){
      if (as.character(chr_ref$chr_num[k]) == old_id){
        return(chr_ref$chr_str[k])
      }
    }
  }else{
    if (type == "chr1A_to_1"){
      # 字符转数字型
      old_id <- as.character(data)
      for (k in 1:nrow(chr_ref)){
        if (as.character(chr_ref$chr_str[k]) == old_id){
          return(chr_ref$chr_num[k])
        }
      }
    }else{
      if (type == "1_to_1A"){
        old_id <- as.character(data)
        for (k in 1:nrow(chr_ref)){
          if (as.character(chr_ref$chr_num[k]) == old_id){
            new <- paste0(chr_ref$atom7[k],chr_ref$atom3[k],sep="")
            return(new)
          }
        }
      }else{
        print("Please input again! type inaviably")
      }
    }
  }
}

该函数提供了一种对染色体格式的快速转换方法,可以对数字型、字符型、全称之间进行快速转换,第一个参数是原始的编号,第二个参数选择转换方式,返回值是一个新的染色体编码值。

  • 批量替换
for (i in 1:nrow(df)){
  df$chrom[i] <- chr_id_translate(
  df$chrom[i],type = "1_to_1A")
}

通过迭代将所有的数值型染色体编号换成数字加字母型。

基因型和表型匹配筛选

  • 数据转换与处理
df2 <- rbind(colnames(df),df)
df_gene <- t(df2)
df_add_gene <- matrix(ncol = ncol(df_gene))
df_add_gene <- df_add_gene[-1,]
df_add_trait <- matrix(ncol = ncol(trait))
df_add_trait <- df_add_trait[-1,]
df_gene <- as.data.frame(df_gene)

对原始数据进行转置,目的是为了让基因型中样品ID按行排布,方便后续筛选,定义一个新的数据框用于储存迭代输出信息。

  • 迭代提取匹配观测值
for (i in 1:nrow(df_gene)){
  id_gene <- df_gene$V1[i]
  for (k in 1:nrow(trait)){
    id_trait <- trait$ID[k]
    if (id_gene == id_trait){
      my_gene <- df_gene[i,]
      my_trait <- trait[k,]
      df_add_gene <- rbind(df_add_gene,my_gene)
      df_add_trait <- rbind(df_add_trait,my_trait)
    }else{
      next
    }
  }
}

通过上述方法可以找出两个表格中完全匹配的样品,生成的df_add_gene是所有匹配到的基因型文件,df_add_trait是所有对应的表型文件。后续可以直接拿来做GAPIT分析。

结果输出与保存

out_gene <- rbind(df_gene[1:11,],df_add_gene)
out_genet <- t(out_gene)
gene_final <- as.data.frame(out_genet)
write.table(gene_final,paste0("./06_out_gene/",job,".gene.hmp.txt"),
            quote = F,sep = "\t",col.names = F,row.names = F)
trait_final <- as.data.frame(df_add_trait)
write.table(trait_final,paste0("./07_out_trait/",job,".trait.txt"),
            quote = F,sep = "\t",col.names = T,row.names = F)
print(paste0(job," hmp and trait formate finished!"))

重新合并头文件并转置,恢复原有结构,然后分别将两个结果保存到对应文件夹中。


方法:GAPIT进行GWAS分析

GAPIT是张志武老师开发的基于R语言的GWAS分析工具,能够根据表型和基因型数据自动进行不同模型的全基因组关联分析,网上有很多公开的教程。本文分析一种方法,进行单基因GWAS分析。


主要步骤

  • 加载分析环境
  • 导入数据
  • 选择模型并开始分析
  • 结果提取

具体操作步骤

加载R包与环境

library(MASS) # required for ginv
library(multtest)
library(gplots)
library(compiler) #required for cmpfun
library(scatterplot3d)
library(bigmemory)
library(ape)
library(EMMREML)
source("./01_scripts/GAPIT1.txt")
source("./01_scripts/GAPIT2.txt")

导入数据

myG <- read.delim(paste0("./06_out_gene/",job,".gene.hmp.txt"),
                  header = F)
myY <- read.table(paste0("./07_out_trait/",job,".trait.txt"),
                  header = T,sep = "\t")

这里需要的数据有两个,myG是基因型文件,需要hmp格式,myY是表型文件,需要制表符分隔的txt文件。

设置项目路径

now_dir <- getwd()
dir.create(paste0(now_dir,"/08_out_GWAS/MLM_",job))
setwd(paste0(now_dir,"/08_out_GWAS/MLM_",job))

由于GAPIT运行后会自动在当前目录下生成若干结果文件,为了避免紊乱,因此对每次结果设置独立路径。这里会读取当前文件夹,然后创建新文件夹并设为临时工作目录。

GAPIT分析

myGAPIT <- GAPIT(
  Y=myY,
  G=myG,
  PCA.total=3,
  model="MLM",
  Random.model = TRUE
)

该步骤是GWAS的核心步骤,根据样本数据量的不同,这一步耗费的时间也不同,完成后会看到很多自动生成的图片和表格文件,该步骤可以选择不同的模型,比如MLM等。

setwd(now_dir)
print(paste0(job,"  GWAS finished!"))

完成后重新回到之前的工作目录


方法:GWAS结果整理

在使用GAPIT进行GWAS分析后,会自动在工作目录下生成若干结果文件,其中相对比较重要的是result.csv文件,该文件中展示了得到的显著位点详细信息,比如染色体、物理位置、p值等,接下来介绍一种算法,对其进行整理计算为绘图所需格式。


主要步骤与思路

  • 读取数据文件GWAS.Results.csv
  • 替换染色体格式
  • 计算上下游区域
  • 计算region信息
  • 生成结果文件

具体操作步骤

加载环境和数据

rm(list = ls())
library(tidyverse)
ARGS <- commandArgs(T)
print(paste0("Results Working Gene ID:",ARGS[1]))
job <- ARGS[1]
dir_MLM <- paste0("MLM_",job)
phe <- ARGS[2]
file_name <- paste0("/GAPIT.MLM.",phe,".GWAS.Results.csv")
df <- read.csv(paste0("./08_out_GWAS/",dir_MLM,file_name),header = T)

主要实用tidyverse包进行数据处理,ARGS是脚本的参数设置,如果单个任务可以直接读入文件,不用脚本传参,只需要设置好文件名进行读取。

染色体格式转换

###  替换染色体展示方式,1A_to_1 ===========================================================
chr_ref <- read.table("01_scripts/chr_num2str.txt",header = T)
# 读取染色体转换参考信息,可以进行自定义修改
chr_id_translate <- function(data,type){
  # 输入俩参,一为原始数据,二为类型
  if (type == "1_to_chr1A"){
    # 数字转字符型
    old_id <- as.character(data)
    for (k in 1:nrow(chr_ref)){
      if (as.character(chr_ref$chr_num[k]) == old_id){
        return(chr_ref$chr_str[k])
      }
    }
  }else{
    if (type == "chr1A_to_1"){
      # 字符转数字型
      old_id <- as.character(data)
      for (k in 1:nrow(chr_ref)){
        if (as.character(chr_ref$chr_str[k]) == old_id){
          return(chr_ref$chr_num[k])
        }
      }
    }else{
      if (type == "1_to_1A"){
        old_id <- as.character(data)
        for (k in 1:nrow(chr_ref)){
          if (as.character(chr_ref$chr_num[k]) == old_id){
            new <- paste0(chr_ref$atom7[k],chr_ref$atom3[k],sep="")
            return(new)
          }
        }
      }else{
        if (type == "1A_to_1"){
          old_id <- as.character(data)
          for (k in 1:nrow(chr_ref)){
            temp <- paste0(chr_ref$atom7[k],chr_ref$atom3[k],sep="")
            if (as.character(temp) == old_id){
              return(chr_ref$chr_num[k])
            }
          }
        }else{
        print("Please input again! type inaviably")
        }
      }
    }
  }
}

刚刚定义了一个函数chr_id_translate能够对染色体文件进行自定义转换,接下来将其依次应用到数据的染色体列。

for (i in 1:nrow(df)){
  df$Chromosome[i] <- chr_id_translate(df$Chromosome[i],"1A_to_1")
}

物理位置区间计算

根据Postion信息计算最大值和最小值,分别向上下游扩展500bp就能得到想要的区间,将其保存为region,用于后续绘图使用

s_1 <- min(df$Position)
s_2 <- max(df$Position)
s_1 <- s_1 - 500
s_2 <- s_2 + 500
region <- paste0(df$Chromosome[1],":",s_1,":",s_2)

结果保存

绘图需要三列信息,分别是染色体、物理位置、p值,因此将这部分数据单独存放到df_new,然后保存为新文件。

###  生成新文件,染色体-位置-P值 =============================================================
df_new <- df[,2:4]
file_new <- paste0("./09_out_MLM/",job,"_MLM.",phe,".GWAS.Results.csv",sep="")
write_csv(df_new,file_new,col_names=F)
相关文章
|
数据采集 芯片
GWAS全基因组关联分析入门教程
GWAS全基因组关联分析入门教程
|
5月前
|
消息中间件 机器学习/深度学习 算法
程序与技术分享:02Prodigal基因预测
程序与技术分享:02Prodigal基因预测
107 2
|
3月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
97 2
|
3月前
|
机器学习/深度学习 SQL 数据采集
"解锁机器学习数据预处理新姿势!SQL,你的数据金矿挖掘神器,从清洗到转换,再到特征工程,一网打尽,让数据纯净如金,模型性能飙升!"
【8月更文挑战第31天】在机器学习项目中,数据质量至关重要,而SQL作为数据预处理的强大工具,助力数据科学家高效清洗、转换和分析数据。通过去除重复记录、处理缺失值和异常值,SQL确保数据纯净;利用数据类型转换和字符串操作,SQL重塑数据结构;通过复杂查询生成新特征,SQL提升模型性能。掌握SQL,就如同拥有了开启数据金矿的钥匙,为机器学习项目奠定坚实基础。
38 0
|
存储 索引 Python
生信教程:使用全基因组SNP数据进行ABBA-BABA分析
生信教程:使用全基因组SNP数据进行ABBA-BABA分析
278 0
|
算法 Linux Python
干货丨 一文详解SGAT单基因关联分析工具(三)
干货丨 一文详解SGAT单基因关联分析工具(三)
|
算法 Linux Shell
干货丨 一文详解SGAT单基因关联分析工具
干货丨 一文详解SGAT单基因关联分析工具
|
数据可视化 数据挖掘 Python
跟着Science学数据分析:利用三代测序数据(PacBio)鉴定结构变异
跟着Science学数据分析:利用三代测序数据(PacBio)鉴定结构变异
|
机器学习/深度学习 存储 运维
论文阅读--异常检测中实时大数据处理的研究挑战
论文阅读--异常检测中实时大数据处理的研究挑战
|
机器学习/深度学习 Web App开发 自动驾驶
驾驭白夜场景、刷新多个SOTA,苏黎世联邦理工用高效时序建模提升多目标追踪与分割
驾驭白夜场景、刷新多个SOTA,苏黎世联邦理工用高效时序建模提升多目标追踪与分割
132 0
下一篇
无影云桌面