SGAT丨快捷GWAS结果显著SNP位点归类提取与变异类型转化算法,基于R语言tidyverse

简介: SGAT丨快捷GWAS结果显著SNP位点归类提取与变异类型转化算法,基于R语言tidyverse

GWAS结果归类提取与变异注释

根据GWAS得到的Rresult文件信息,能够找出每个snp位点对应的显著性情况和基因变异信息,接下来,需要根据表格中的信息进行归纳总结,对不同显著性层次进行区分,找出可能性最大的点,过程比较繁琐。

这里笔者分享一个算法,使统计SNP和变异类型变的更加简便快捷,主要基于R语言的tidyverse完成。


主要步骤与思路解析

  • 加载R包与环境,表型和基因列表文件
  • 定义变异信息转换函数
  • 创建输出数据框,包括基因和注释信息
  • 迭代筛选符合要求的SNP
  • 按照多个层次依次统计显著情况
  • 结果合并与注释

项目运行环境

  • centos7 linux
  • R4.2.3

操作步骤

加载R包

library(tidyverse)
library(writexl)
library(xlsx)

读取输入文件

list_phe <- read.table("./01_scripts/list_phe.txt",header = F)
# list_gene <- read.table("./01_scripts/list_gene.txt",header = F)
list_gene <- read.table("./17_GWAS_SNP_varient_find/gene.id",header = F)
varient_db <- read.table("./01_scripts/function/varient_name.txt",sep = "\t",header = F)

主要依赖三个文件,phe为变形列表,需要与GWAS结果的phe一致,gene为基因ID列表,varient_db是变异类型注释库,包含一一对应的变异信息。

变异信息转换

# 定义一个转换变异的函数
varient_name <- function(x){
      if (x %in% varient_db$V1){
            for (i in 1:nrow(varient_db)){
                  if (varient_db$V1[i]==x){
                        return(varient_db$V2[i])
                  }
            } 
      }else{
            return(x)
      }
}

这里定义一个函数,对输入的变异类型自动查找匹配的注释信息,若出现不存在于已有的变异类型,则返回原始值,后续结果中方便检查和校正。

创建输出数据框

out <- list_gene
colnames(out) <- "gene"
out$additon <- NA

在计算开始前,创建一个空数据框,用于迭代过程中添加信息,提前分配储存空间,其中第一列为基因ID,第二列为注释。

迭代筛选算法

下面我提供了两种思路,方法一是先对每个表型下的所有snp进行判断,如果存在大于阈值的显著位点则备注,反之舍弃。方法二是先找出单个SNP,然后再判断该位点处有多少个表型符合要求,如果存在多个表型均显著,则将其归纳统计到一起。

for (job in list_gene$V1){
      print(job)
      df <- read.xlsx(paste0("./16_out_GWAS_and_T/",job,"_all.xlsx"),sheetIndex = 1)
      # 法一:寻找每个表型下的SNP
      # 7  9 11 13 15 17 19 21 23 25 27 29 为待提取的值
      # for (i in seq(7,29,2)){ 
      #       phe <- colnames(df)[i]
      #       df_p7_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>7)
      #       df_p3_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>3) %>% filter(!!sym(phe)<7)
      #       # P值大于7
      #       var_en <- df_p7_snp$T_eff[1] %>% str_split("[,]") %>% str_split("[|]")
      #       var_en <- var_en[[1]][2]
      #       var_cn <- varient_name(var_en)
      # }
      # 法二:寻找每个snp下符合的表型
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))]
            find_phe <- c()
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>7){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>7]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
      }
      if (nrow(find) == 0){
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))] 
            find_phe <- c()
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>5){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>5]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
         }
      }
      if (nrow(find) == 0){
            find <- matrix(ncol = 4,nrow = 0)
            colnames(find) <- c("snp","var","p","phe")
            for (i in 1:nrow(df)){
                  snp_name <- df$SNP[i]
                  if (is.na(df$T_eff[i])){next}
                  snp_var_en <- df$T_eff[i] %>% str_split("[,]")
                  snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
                  if (substr(snp_var_en,4,22)!=job){next}
                  snp_var_en <- snp_var_en[[1]][2]
                  snp_var_en <- varient_name(snp_var_en)
                  snp_phe_p <- df[i,c(seq(7,29,2))] 
                  find_phe <- c()
                  for (i in 1:ncol(snp_phe_p)){
                        if (snp_phe_p[1,i]>3){ 
                              find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                        }
                  }
                  find_snp <- c(snp_name,snp_var_en,"[P>3]",paste0(find_phe,collapse = "+"))
                  if (find_snp[4]!=""){
                        find <- rbind(find,find_snp)
                  }
            }
      }
      var_info <- c()
      out_info <- c()
      if (nrow(find)==0){
            out_info <- "GAPIT:log10.P < 3"
      }else{
            for (i in 1:nrow(find)){
                  var_info <- c(var_info,find[i,2],find[i,1],find[i,3],paste0("(",find[i,4],"),"))
            }
            out_info <- paste0(nrow(find),"个-GAPIT分析",paste0(var_info,collapse =""))
            out_info <- substr(out_info,1,nchar(out_info)-1)
      }
      for (i in 1:nrow(out)){
            if (identical(out$gene[i],job)){
                  out$additon[i] <- out_info
                  break
            }
      }
}

上述算法的核心是先从基因列表中取一个基因,然后找这个基因对应的snp和表型,如果找到某些snp在多个表型中显著性都大于7,则将其添加到注释信息,但是如果没有大于7的位点,则开始继续寻找是否存在大于5的位点,以此类推,若也没有大于5的点,则寻找大于3的位点。

该过程将显著区间分为三层,只有上层个数为零时,才会启动下一层的搜索,因此保证了每次结果的显著性差异保持在相对较平均的范围中,防止过大过小的位点同时选中。

结果保存

write.xlsx(out,
    "./17_GWAS_SNP_varient_find/gene_infomation.xlsx",
    sheetName = "varient",
    row.names = F,col.names = T)

结果文件保存在out变量中,将其输出为excel即可,如有其它想法可以根据out再进行深入分析,本文不做延伸。

END

© 素材来源于网络,侵权请联系后台删除

笔记合集,点击直达

相关文章
|
3月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
6月前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
5月前
|
算法
数据结构和算法学习记录——线性表之双向链表(上)-结点类型定义、初始化函数、创建新结点函数、尾插函数、打印函数、尾删函数
数据结构和算法学习记录——线性表之双向链表(上)-结点类型定义、初始化函数、创建新结点函数、尾插函数、打印函数、尾删函数
49 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
3月前
|
数据采集 前端开发 算法
基于朴素贝叶斯算法的新闻类型预测,django框架开发,前端bootstrap,有爬虫有数据库
本文介绍了一个基于Django框架和朴素贝叶斯算法开发的新闻类型预测系统,该系统具备用户登录注册、后台管理、数据展示、新闻分类分布分析、新闻数量排名和新闻标题预测等功能,旨在提高新闻处理效率和个性化推荐服务。
|
5月前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
5月前
|
存储 机器学习/深度学习 算法
使用决策树算法预测隐形眼镜类型
使用决策树算法预测隐形眼镜类型
43 2
|
5月前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
59 0
|
6月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
6月前
|
算法 项目管理
R语言实现蒙特卡洛模拟算法
R语言实现蒙特卡洛模拟算法
下一篇
无影云桌面