【C++】AVL树的实现及测试

简介: 【C++】AVL树的实现及测试

AVL树

AVL树也叫平衡二叉搜索树,通过旋转解决了搜索二叉树的不确定性,让整颗树趋近于一颗满二叉树。

1.左右都是一颗AVL树

2.平衡因子的绝对值不会超过1

上图的蓝字表示平衡因子,平衡因子=右子树的高度-左子树的高度

AVL树节点的定义

template<class K,class V>
struct AVLTreeNode
{
  ALVTreeNode<K,V>* _left;
  AVLTreeNode<K,V>* _right;
  AVLTreeNode<K,V>* _parent;//父亲节点
  pair<K, V> _kv;//  key / value
  //构造函数
  AVLTreeNode(const pair<K,V>& kv)
    :_left(nullptr)
    ,_right(nullptr)
    ,_parent(nullptr)
    ,_kv(kv)
    ,_bf(0)
  {}
  int _bf;//平衡因子
};

AVL树的定义

template<class K,class V>
class AVLTree
{
  typedef AVLTreeNode<K, V> Node;
public:
private:
  Node* _root=nullptr;
};

AVL树的插入

AVL树的插入和二叉搜索树一样,小的在左边,大的在右边,只是当平衡因子绝对值大于1的时候需要对树进行旋转

bool Insert(const pair<K, V>& kv)
  {
    if (_root == nullptr)
    {
      _root = new Node(kv);
      return true;
    }
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
      if (cur->_kv.first < kv.second)
      {
        //当前值小于要插入的值,往右边走
        parent = cur;
        cur = cur->_right;
      }
      else if (cur->_kv.first > kv.second)
      {
        //当前值大于要插入的值,往左边走
        parent = cur;
        cur = cur->_left;
      }
      else
      {
        //有相同的值了,退出插入
        return false;
      }
    }
    //当cur走到了nullptr,就是找到了要插入的点了
    cur = new Node(kv);
    //判断插入在左边还是右边
    if (parent->_kv.first < kv.first)
    {
      parent->_right = cur;
    }
    else
    {
      parent->_left = cur;
    }
    cur->_parent = parent;//确定父子关系
  }

插入后更新平衡因子

平衡因子,如果在左边插入节点,那么它的父节点的平衡因子要-1,反之+1

case1:parent节点的平衡因子为0,说明整棵树的高度并没有发生改变,只是补齐了原本缺节点的位置,所以遇到parent->_bf=0的时候,就不需要在修改平衡因子了

case2:parent节点的平衡因子的绝对值为-1,就说明往上走可能存在abs(parent->_bf)=2的,所以要往上一直找。

parent=parent->_parent;

cur=cur->_parent;

如果abs(parent->_bf)=2就需要对其进行旋转来调整树的结构了。

while (parent)
    {
      //更新平衡因子
      if (cur == parent->_left)
      {
        parent->_bf--;
      }
      else
      {
        parent->_bf++;
      }
      if (parent->_bf == 0)
      {
        //没有新增高度
        break;
      }
      else if(abs(parent->_bf)==1)
      {
        //平衡因子为1,往上面继续找
        parent = parent->_parent;
        cur = cur->_parent;
      }
      else if (abs(parent->_bf) == 2)
      {
        //需要旋转了
      }
    }

AVL树的右单旋

新节点插入较高左子树的左侧—左左:右单旋

例如上面的抽象图,当平衡树失衡的时候就需要调节平衡了,过程如上图所示。

具体图如下:

这里的操作就是将subL作为一个根节点,将subLR作为parent的左节点(如果subLR存在的话),parent作为subL的右子节点。

左旋的条件是parent->_bf==-2&&cur->_bf==-1

旋转之后parent的平衡因子为0,subL的平衡因子也是0。

void RotateR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    parent->_left = subLR;
    Node* pparent = parent->_parent;
    //防止空指针
    if (subLR)
    {
      subLR->_parent = parent;
    }
        subL->_right = parent;
    parent->_parent = subL;
    if (parent == _root)
    {
      //如果parent就是根节点
      _root = subL;
      subL->_parent = nullptr;
    }
    else
    {
      //如果parent只是一颗子树的根节点,就还需要连接好parent
      //判断是左还是右节点
      if (pparent->_left == parent)
      {
        pparent->_left = subL;
      }
      else
      {
        pparent->_right = subL;
      }
      subL->_parent = pparent;
    }
    subL->_bf = parent->_bf = 0;
  }

AVL树的左单旋

新节点插入较高右子树的右侧—右右:左单旋

方法和右单旋类似。

当**parent->_bf==2&&cur->_bf==1**的时候触发左单旋

void RotateL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    Node* pparent = parent->_parent;
    parent->_right = subRL;
    if (subRL)
    {
      subRL->_parent = subR;
    }
    subR->_left = parent;
    parent->_parent = subR;
    if (parent == _root)
    {
      _root = subR;
      subR->_parent = nullptr;
    }
    else
    {
      if (pparent->_left == parent)
      {
        pparent->_left = subR;
      }
      else
      {
        pparent->_right = subR;;
      }
      subR->_parent = pparent;
    }
    subR->_bf = parent->_bf = 0;
  }

可以发现,如果满足左/右单旋的条件都是在同一条直线上,那如果路径不是在同一条直线上呢?

先左单旋再右单旋

新节点插入较高左子树的右侧—左右:先左单旋再右单旋

如果将节点插入到c当中,平衡因子就会发生改变,所以这里的平衡因子需要分情况讨论。

这里通过subLR的平衡因子来确定是在左边插入还是在右边插入。

两种情况下subLR都是0。

下图是最简单的双旋:

void RotateRL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    int bf = subRL->_bf;
    RotateR(parent->_right);
    RotateL(parent);
    subRL->_bf = 0;
    if (bf == 1)
    {
      subR->_bf = 0;
      parent->_bf = -1;
    }
    else if (bf == -1)
    {
      subR->_bf = 1;
      parent->_bf = 0;
    }
    else if (bf == 0)
    {
      parent->_bf = 0;
      subR->_bf = 0;
    }
    else
    {
      assert(false);
    }
  }

先右单旋再左单旋

新节点插入较高右子树的左侧—右左:先右单旋再左单旋

C增加节点之后高度和d一样都是h,将其全部旋转到右边去,然后再通过左旋把30压下去,将60作为根节点。

void RotateLR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL-> _right;
    int bf = subLR->_bf;//提前存好,旋转后会subLR会发生改变
    RotateL(parent->_left);
    RotateR(parent);
    subLR->_bf = 0;
    if (bf == 1)
    {
      //在右边插入
      parent->_bf = 0;
      subL->_bf = -1;
    }
    else if (bf == -1)
    {
      parent->_bf = 1;
      subL->_bf = 0;
    }
    else if (bf == 0)
    {
      //已经平衡了
      parent->_bf = 0;
      subL->_bf = 0;
    }
    else
    {
      //插入存在问题
      assert(false);
    }
  }

检查是否满足AVL树

通过计算左右子树的高度来确定是否满足AVL树,因为平衡因子是自己设置的,如果还通过平衡因子来确定的话会不太准。

bool _IsBalance(Node* root)
  {
    if (root == nullptr)
    {
      return true;
    }
    int leftHT = Height(root->_left);
    int rightHT = Height(root->_right);
    int diff = rightHT - leftHT;
    if (diff != root->_bf)
    {
      cout << root->_kv.first << "平衡因子异常" << endl;
      return false;
    }
    return abs(diff) < 2
      && _IsBalance(root->_left)//递归左子树
      && _IsBalance(root->_right);//递归右子树
  }
  int Height(Node* root)
  {
    if (root == nullptr)
      return 0;
    int left = Height(root->_left);
    int right = Height(root->_right);
    return max(left, right) + 1;
  }

手写旋转过程:

总代码

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
  AVLTreeNode<K,V>* _left;
  AVLTreeNode<K,V>* _right;
  AVLTreeNode<K,V>* _parent;//父亲节点
  pair<K, V> _kv;//  key / value
  //构造函数
  AVLTreeNode(const pair<K,V>& kv)
    :_left(nullptr)
    ,_right(nullptr)
    ,_parent(nullptr)
    ,_kv(kv)
    ,_bf(0)
  {}
  int _bf;//平衡因子
};
template<class K,class V>
class AVLTree
{
  typedef AVLTreeNode<K, V> Node;
public:
  bool Insert(const pair<K, V>& kv)
  {
    if (_root == nullptr)
    {
      _root = new Node(kv);
      return true;
    }
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
      if (cur->_kv.first < kv.second)
      {
        //当前值小于要插入的值,往右边走
        parent = cur;
        cur = cur->_right;
      }
      else if (cur->_kv.first > kv.second)
      {
        //当前值大于要插入的值,往左边走
        parent = cur;
        cur = cur->_left;
      }
      else
      {
        //有相同的值了,退出插入
        return false;
      }
    }
    //当cur走到了nullptr,就是找到了要插入的点了
    cur = new Node(kv);
    //判断插入在左边还是右边
    if (parent->_kv.first < kv.first)
    {
      parent->_right = cur;
    }
    else
    {
      parent->_left = cur;
    }
    cur->_parent = parent;//确定父子关系
    //控制平衡因子
    while (parent)
    {
      if (cur == parent->_right)
      {
        parent->_bf++;
      }
      else
      {
        parent->_bf--;
      }
      if (parent->_bf == 0)
      {
        break;
      }
      else if (abs(parent->_bf) == 1)
      {
        parent = parent->_parent;
        cur = cur->_parent;
      }
      else if (abs(parent->_bf) == 2)
      {
        // 说明parent所在子树已经不平衡了,需要旋转处理
        if (parent->_bf == 2 && cur->_bf == 1)
        {
          RotateL(parent);
        }
        else if ((parent->_bf == -2 && cur->_bf == -1))
        {
          RotateR(parent);
        }
        else if (parent->_bf == -2 && cur->_bf == 1)
        {
          RotateLR(parent);
        }
        else if (parent->_bf == 2 && cur->_bf == -1)
        {
          RotateRL(parent);
        }
        else
        {
          assert(false);
        }
        break;
      }
      else
      {
        assert(false);
      }
    }
  }
  void InOrder()
  {
    _InOrder(_root);
    cout << endl;
  }
  bool IsBalance()
  {
    return _IsBalance(_root);
  }
private:
  void RotateRL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    int bf = subRL->_bf;
    RotateR(parent->_right);
    RotateL(parent);
    subRL->_bf = 0;
    if (bf == 1)
    {
      subR->_bf = 0;
      parent->_bf = -1;
    }
    else if (bf == -1)
    {
      subR->_bf = 1;
      parent->_bf = 0;
    }
    else if (bf == 0)
    {
      parent->_bf = 0;
      subR->_bf = 0;
    }
    else
    {
      assert(false);
    }
  }
  void RotateLR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL-> _right;
    int bf = subLR->_bf;//提前存好,旋转后会subLR会发生改变
    RotateL(parent->_left);
    RotateR(parent);
    subLR->_bf = 0;
    if (bf == 1)
    {
      //在右边插入
      parent->_bf = 0;
      subL->_bf = -1;
    }
    else if (bf == -1)
    {
      parent->_bf = 1;
      subL->_bf = 0;
    }
    else if (bf == 0)
    {
      //已经平衡了
      parent->_bf = 0;
      subL->_bf = 0;
    }
    else
    {
      //插入存在问题
      assert(false);
    }
  }
  void RotateL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    Node* pparent = parent->_parent;
    parent->_right = subRL;
    if (subRL)
    {
      subRL->_parent = subR;
    }
    subR->_left = parent;
    parent->_parent = subR;
    if (parent == _root)
    {
      _root = subR;
      subR->_parent = nullptr;
    }
    else
    {
      if (pparent->_left == parent)
      {
        pparent->_left = subR;
      }
      else
      {
        pparent->_right = subR;;
      }
      subR->_parent = pparent;
    }
    subR->_bf = parent->_bf = 0;
  }
  void RotateR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    parent->_left = subLR;
    Node* pparent = parent->_parent;
    //防止空指针
    if (subLR)
    {
      subLR->_parent = parent;
    }
    subL->_right = parent;
    parent->_parent = subL;
    if (parent == _root)
    {
      //如果parent就是根节点
      _root = subL;
      subL->_parent = nullptr;
    }
    else
    {
      //如果parent只是一颗子树的根节点,就还需要连接好parent
      //判断是左还是右节点
      if (pparent->_left == parent)
      {
        pparent->_left = subL;
      }
      else
      {
        pparent->_right = subL;
      }
      subL->_parent = pparent;
    }
    subL->_bf = parent->_bf = 0;
  }
  void _InOrder(Node* root)
  {
    if (root == nullptr)
    {
      return;
    }
    _InOrder(root->_left);
    cout << root->_kv.first << ":" << root->_kv.second << endl;
    _InOrder(root->_right);
  }
  bool _IsBalance(Node* root)
  {
    if (root == nullptr)
    {
      return true;
    }
    int leftHT = Height(root->_left);
    int rightHT = Height(root->_right);
    int diff = rightHT - leftHT;
    if (diff != root->_bf)
    {
      cout << root->_kv.first << "平衡因子异常" << endl;
      return false;
    }
    return abs(diff) < 2
      && _IsBalance(root->_left)
      && _IsBalance(root->_right);
  }
  int Height(Node* root)
  {
    if (root == nullptr)
      return 0;
    int left = Height(root->_left);
    int right = Height(root->_right);
    return max(left, right) + 1;
  }
private:
  Node* _root=nullptr;
};
void TestAVLTree1()
{
  int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };  // 测试双旋平衡因子调节
  //int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
  AVLTree<int, int> t1;
  for (auto e : a)
  {
    t1.Insert(make_pair(e, e));
  }
  t1.InOrder();
  cout << "IsBalance:" << t1.IsBalance() << endl;
}

可以看到是满足AVL树的。


目录
相关文章
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
180 17
|
10月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
345 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
10月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
292 12
|
10月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
189 10
|
10月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
427 3
|
12月前
|
存储 C++
【C++】AVL树
AVL树是一种自平衡二叉搜索树,由Georgy Adelson-Velsky和Evgenii Landis提出。它通过确保任意节点的两子树高度差不超过1来维持平衡,支持高效插入、删除和查找操作,时间复杂度为O(log n)。AVL树通过四种旋转操作(左旋、右旋、左-右旋、右-左旋)来恢复树的平衡状态,适用于需要频繁进行数据操作的场景。
414 2
|
存储 C++
【C++】AVL树
AVL树是一种自平衡二叉搜索树:它以苏联科学家Georgy Adelson-Velsky和Evgenii Landis的名字命名。
139 2
|
C++ 容器
【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——AVL树
【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——AVL树
146 5
|
C++
【C++】手撕AVL树(下)
【C++】手撕AVL树(下)
133 1
|
9月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。

热门文章

最新文章