阿里面试官:给我描述一下缓存击穿的现象,并说说你的解决思路?

简介: 缓存(内存 or Memcached or Redis.....)在互联网项目中广泛应用,本篇博客将讨论下缓存击穿这一个话题,涵盖缓存击穿的现象、解决的思路、以及通过代码抽象方式来处理缓存击穿。

原文作者:张丰哲

前言

缓存(内存 or Memcached or Redis.....)在互联网项目中广泛应用,本篇博客将讨论下缓存击穿这一个话题,涵盖缓存击穿的现象、解决的思路、以及通过代码抽象方式来处理缓存击穿。

什么是缓存击穿?

上面的代码,是一个典型的写法:当查询的时候,先从Redis集群中取,如果没有,那么再从DB中查询并设置到Redis集群中。


注意,在实际开发中,我们一般在缓存中,存储的数据结构是JSON。(JDK提供的序列化方式效率稍微比JSON序列化低一些;而且JDK序列化非常严格,字段的增减,就很可能导致反序列失败,而JSON这方面兼容性较好)


假设从DB中查询需要2S,那么显然这段时间内过来的请求,在上述的代码下,会全部走DB查询,相当于缓存被直接穿透,这样的现象就称之为“缓存击穿”!

避免缓存击穿的思路分析

加synchronized?

如果synchronized加在方法上,使得查询请求都得排队,本来我们的本意是让并发查询走缓存。也就是现在synchronized的粒度太大了。

缩小synchronized的粒度?

上面代码,在缓存有数据时,让查询缓存的请求不必排队,减小了同步的粒度。但是,仍然没有解决缓存击穿的问题。


虽然,多个查询DB的请求进行排队,但是即便一个DB查询请求完成并设置到缓存中,其他查询DB的请求依然会继续查询DB!

synchronized+双重检查机制

通过synchronized+双重检查机制:


在同步块中,继续判断检查,保证不存在,才去查DB。


代码抽象

发现没有,其实我们处理缓存的代码,除了具体的查询DB逻辑外,其他都是模板化的。下面我们就来抽象下!


一个查询DB的接口:

既然查询具体的DB是由业务来决定的,那么暴露这个接口让业务去实现它。

一个模板:

Spring不是有很多Template类么?我们也可以通过这种思想对代码进行一个抽象,让外界来决定具体的业务实现,而把模板步骤写好。(有点类似AOP的概念)

改进后的代码:

从这里可以看出,我们并不关心缓存的数据从哪里加载,而是交给具体的使用方,而且使用方在使用时再也不必关注缓存击穿的问题,因为我们都给抽象了。

相关文章
|
23小时前
|
缓存 NoSQL Java
阿里面试:DDD 落地,遇到哪些 “拦路虎”?如何破局?
为每个子领域定义限界上下文(bounded context),限界上下文是一个清晰定义了领域模型的边界的范围。在限界上下文内,领域模型的概念是一致的,但不同限界上下文之间可以有不同的模型和语言。界限上下文,基本可以对应到 落地层面的 微服务。这就是 DDD 建模和 微服务架构, 能够成为孪生兄弟、 天然统一的原因。具体的方法论和落地实操,请参考 《第34章视频 DDD学习圣经》DDD 战略设计的第一步就是统一语言,也叫通用语言(UBIQUITOUS LANGUAGE),用于定义上下文。
阿里面试:DDD 落地,遇到哪些 “拦路虎”?如何破局?
|
1月前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
1月前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
99 22
|
2月前
|
存储 NoSQL 架构师
阿里面试:聊聊 CAP 定理?哪些中间件是AP?为什么?
本文深入探讨了分布式系统中的“不可能三角”——CAP定理,即一致性(C)、可用性(A)和分区容错性(P)三者无法兼得。通过实例分析了不同场景下如何权衡CAP,并介绍了几种典型分布式中间件的CAP策略,强调了理解CAP定理对于架构设计的重要性。
112 4
|
3月前
|
缓存 NoSQL 数据库
缓存穿透、缓存击穿和缓存雪崩及其解决方案
在现代应用中,缓存是提升性能的关键技术之一。然而,缓存系统也可能遇到一系列问题,如缓存穿透、缓存击穿和缓存雪崩。这些问题可能导致数据库压力过大,甚至系统崩溃。本文将探讨这些问题及其解决方案。
|
3月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
3月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
3月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
移动开发 自然语言处理 Java
终于把公众号扫码关注绑定手机号自动登录讲清楚了
日常开发中,相信不管做 C 端还是 B 端业务的同学都会遇到微信相关的业务,比如微信登录、微信支付、公众号扫码关注等场景。 最近博主在做公众号扫码关注自动登录这一块的业务,因此总结绘制了一张公众号扫码关注绑定手机号自动登录流程图分享给大家。
340 0
|
XML 应用服务中间件 Android开发
Eclipse出现Tomcat无法启动:Server Tomcat v8.5 Server at localhost failed to start问题
Eclipse出现Tomcat无法启动:Server Tomcat v8.5 Server at localhost failed to start问题
474 0
Eclipse出现Tomcat无法启动:Server Tomcat v8.5 Server at localhost failed to start问题