MoE 系列(七)| Envoy Go 扩展之沙箱安全

简介: 在本系列的第 5 篇《MoE 系列(五)|Envoy Go 扩展之内存安全》中我们介绍了内存安全如何实现。第 6 篇《MoE 系列(六)| Envoy Go 扩展之并发安全》又谈到了并发场景下的内存安全。今天,我们来到了安全性的最后一篇:沙箱安全,也是相对来说,最简单的一篇。

在本系列的第 5 篇《MoE 系列(五)|Envoy Go 扩展之内存安全》中我们介绍了内存安全如何实现。第 6 篇《MoE 系列(六)| Envoy Go 扩展之并发安全》又谈到了并发场景下的内存安全。
今天,我们来到了安全性的最后一篇:沙箱安全,也是相对来说,最简单的一篇。

沙箱安全

所谓的沙箱安全,是为了保护 Envoy 这个宿主程序的安全,也就是说,扩展的 Go 代码运行在一个沙箱环境中,即使 Go 代码跑飞了,也不会把 Envoy 搞挂。

具体到一个场景,也就是当我们使用 Golang 来扩展 Envoy 的时候,不用担心自己的 Go 代码写得不好,而把整个 Envoy 进程搞挂了。

那么目前 Envoy Go 扩展的沙箱安全做到了什么程度呢?

简单来说,目前只做到了比较浅层次的沙箱安全。不过,也是实用性比较高的一层。

严格来说,Envoy Go 扩展加载的是可执行的机器指令,是直接交给 CPU 来运行的,并不像 Wasm 或者 Lua 一样由虚拟机来解释执行。所以,理论上来说,也没办法做到绝对的沙箱安全。

实现机制

目前实现的沙箱安全机制,依赖的是 Go Runtime 的 recover 机制。

具体来说,Go 扩展底层框架会自动地,或者(代码里显示启动的协程)依赖人工显示地,通过 defer 注入我们的恢复机制。所以,当 Go 代码发生了崩溃的时候,则会执行我们注入的恢复策略,此时的处理策略是,使用 500 错误码结束当前请求,而不会影响其他请求的执行。

但是这里有一个不太完美的点,有一些异常是 recover 也不能恢复的,比如这几个:

Concurrent map writes
Out of memory
Stack memory exhaustion
Attempting to launch a nil function as a goroutine
All goroutines are asleep - deadlock

好在这几个异常,都是不太容易出现的。唯一一个值得担心的是 Concurrent map writes,不熟悉 Go 的话,还是比较容易踩这个坑的。

所以,在写 Go 扩展的时候,我们建议还是小心一些,写得不好的话,还是有可能会把 Envoy 搞挂的。

当然,这个也不是一个很高的要求,毕竟这是 Gopher 写 Go 代码的很常见的基本要求。

好在大多常见的异常,都是可以 recover 恢复的,这也就是为什么现在的机制,还是比较有实用性。

未来

那么,对于 recover 恢复不了的,也是有解决的思路:

比如 recover 恢复不了 Concurrent map writes,是因为 Runtime 认为 map 已经被写坏了,不可逆了。

那如果我们放弃整个 runtime,重新加载 so 来重建 runtime 呢?那影响面也会小很多,至少 Envoy 还是安全的,不过实现起来还是比较地麻烦。

眼下比较浅的安全机制,也足够解决大多数的问题了。

MOSN Star 一下✨:

https://github.com/mosn/mosn

本周推荐阅读

MoE 系列(一)|如何使用 Golang 扩展 Envoy

MoE 系列(二)|Golang 扩展从 Envoy 接收配置

MoE 系列(三)|使用 Istio 动态更新 Go 扩展配置

MoE 系列(四)|Go 扩展的异步模式

相关文章
|
5月前
|
存储 安全 程序员
|
5月前
|
存储 安全 编译器
|
8月前
|
存储 安全 编译器
go语言中进行不安全的类型操作
【5月更文挑战第10天】Go语言中的`unsafe`包提供了一种不安全但强大的方式来处理类型转换和底层内存操作。包含两个文档用途的类型和八个函数,本文也比较了不同变量和结构体的大小与对齐系数,强调了字段顺序对内存分配的影响。
140 8
go语言中进行不安全的类型操作
|
7月前
|
NoSQL 安全 Go
Go 语言 mongox 库:简化操作、安全、高效、可扩展、BSON 构建
go mongox 是一个基于泛型的库,扩展了 MongoDB 的官方库。通过泛型技术,它实现了结构体与 MongoDB 集合的绑定,旨在提供类型安全和简化的数据操作。 go mongox 还引入链式调用,让文档操作更流畅,并且提供了丰富的 BSON 构建器和内置函数,简化了 BSON 数据的构建。 此外,它还支持插件化编程和内置多种钩子函数,为数据库操作前后的自定义逻辑提供灵活性,增强了应用的可扩展性和可维护性。
108 6
|
6月前
|
安全 Go
Go语言map并发安全,互斥锁和读写锁谁更优?
Go并发编程中,`sync.Mutex`提供独占访问,适合读写操作均衡或写操作频繁的场景;`sync.RWMutex`允许多个读取者并行,适用于读多写少的情况。明智选择锁可提升程序性能和稳定性。示例展示了如何在操作map时使用这两种锁。
72 0
|
6月前
|
安全 Go 开发者
Go语言map并发安全使用的正确姿势
在Go并发编程中,由于普通map不是线程安全的,多goroutine访问可能导致数据竞态。为保证安全,可使用`sync.Mutex`封装map或使用从Go 1.9开始提供的`sync.Map`。前者通过加锁手动同步,后者内置并发控制,适用于多goroutine共享。选择哪种取决于具体场景和性能需求。
77 0
|
6月前
|
存储 安全 Java
Go语言中的map为什么默认不是并发安全的?
Go语言的map默认不保证并发安全,以优化性能和简洁性。官方建议在需要时使用`sync.Mutex`保证安全。从Go 1.6起,并发读写map会导致程序崩溃,鼓励开发者显式处理并发问题。这样做的哲学是让代码更清晰,并避免不必要的性能开销。
68 0
|
8月前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
226 7
|
8月前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
482 5
|
21天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
68 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用