m基于FPGA的高斯白噪声信道模拟系统verilog实现,包含testbench,可以配置不同的SNR和频偏

简介: m基于FPGA的高斯白噪声信道模拟系统verilog实现,包含testbench,可以配置不同的SNR和频偏

1.算法仿真效果
vivado2019.2仿真结果如下:

24d323819e87b51dbbad661f115aefb6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

SNR=0db,无频偏
3ce371c748e043b84ad4869477895035_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

SNR=5db,无频偏

bdd737ea1dfe5cfc4dfc84a7e5b9f5f1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

SNR=25db,无频偏
993dcc668dd708b3b0e6646c2f98dcf6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

SNR=45db,带频偏

ac71160c323f070a9116e15b22f94494_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
高斯白噪声信道在通信系统中具有重要意义,模拟此类信道有助于评估系统性能。本文提出的FPGA实现系统可以灵活地模拟不同信道条件,为通信系统的设计和测试提供有力支持。

04f17672718533eecd987d6c42c89d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

本系统的设计分为以下几个步骤:

生成高斯白噪声:使用随机数生成器产生服从高斯分布的随机数,作为噪声信号。
生成发送信号:根据应用场景生成发送信号,如调制后的信号。
添加信道效应:将发送信号与高斯白噪声相加,模拟信道效应。
频偏模拟:将发送信号经过频偏模块,引入频偏效应。
编写Testbench:编写Verilog测试台,配置不同的SNR和频偏参数,验证系统功能。
本系统在通信系统设计、性能评估和算法验证等方面具有广泛应用。通过模拟不同信道条件,可以评估系统在各种环境下的性能表现,指导系统设计优化。

3.verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/08/17 14:13:20
// Design Name:
// Module Name: TEST
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TEST();

reg i_clk;
reg i_rst;
reg signed[7:0]i_SNR;//根据质量得到当前帧类型:-10~50
reg signed[15:0]i_fre;
wire signed[15:0]i_real1;
wire signed[15:0]i_imag1;
wire signed[15:0]o_Rnoise1;
wire signed[15:0]o_Inoise1;
wire signed[15:0]o_real1;
wire signed[15:0]o_imag1;

reg signed[1:0]i_Idiff;
reg signed[1:0]i_Qdiff;
initial
begin
i_Idiff = 2'b00;

#1440
repeat(12500)
begin
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b01;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
#10 i_Idiff = 2'b00;
#30 i_Idiff = 2'b11;
end
$stop();

end
initial
begin
i_Qdiff = 2'b00;

#1440
repeat(12500)
begin
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b01;
#10 i_Qdiff = 2'b00;
#30 i_Qdiff = 2'b11;
end
$stop();

end

//测试信号源
wire signed[1:0] w_Inz=i_Idiff;
wire signed[1:0] w_Qnz=i_Qdiff;

//成型滤波
fiter uut1(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Inz),
.o_dout (i_real1)
);

fiter uut2(
.i_clk (i_clk),
.i_rst (i_rst),
.i_din (w_Qnz),
.o_dout (i_imag1)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;
i_fre= 0;
i_SNR = 8'd0;

#1600
i_rst = 1'b0;
i_SNR = 0;
i_fre= 0;
#10000
i_SNR = 5;
i_fre= 0;
#10000
i_SNR = 15;
i_fre= 0;
#10000
i_SNR = 25;
i_fre= 0;
#10000
i_SNR = 45;
i_fre= 10;//1/2^15*100e6=3k频偏

end

always #5 i_clk=~i_clk;

AWGN_tops AWGN_tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_SNR (i_SNR),//根据质量得到当前帧类型:-10~50
.i_fre (i_fre),
.i_real1 (i_real1),
.i_imag1 (i_imag1),
.o_Rnoise1 (o_Rnoise1),
.o_Inoise1 (o_Inoise1),
.o_real1 (o_real1),
.o_imag1 (o_imag1)
);

endmodule
```

相关文章
|
29天前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
1月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
37 3
|
16天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
27 0
|
5月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
138 7
|
5月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
168 2
|
5月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
5月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
54 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
75 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
3月前
|
C语言 芯片 异构计算
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
|
5月前
|
算法 异构计算
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
50 0

热门文章

最新文章

下一篇
无影云桌面