从零开始构建自己的AI:一个初学者的机器学习教程

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 通过这个简单的机器学习教程,我们初步了解了从数据收集、选择模型到训练和预测的基本流程。机器学习是一个广阔的领域,有很多知识和技能需要深入学习。希望本教程能为初学者提供一个入门的指引,引导大家探索更多有关机器学习的知识。感谢您阅读本文,如果您有任何问题或想法,请在评论区与我分享!让我们一起踏上机器学习的旅程,构建属于自己的AI。

欢迎来到我的博客!在今天的文章中,我们将带您踏上一段令人兴奋的旅程,学习如何从零开始构建自己的人工智能(AI)。无论您是完全没有机器学习经验的初学者,还是想巩固知识的中级开发者,本教程都将帮助您入门机器学习。

a2.png

什么是机器学习?

机器学习是人工智能的一个分支,其目标是让计算机能够从数据中学习并做出预测或决策,而无需明确的程序。在本教程中,我们将使用Python编程语言,因为它在机器学习领域有着广泛的应用。

步骤1:准备环境

在开始之前,我们需要设置好开发环境。首先,确保您已经安装了Python和所需的库,如NumPy和Scikit-Learn。您可以使用以下命令进行安装:

pip install numpy scikit-learn
AI 代码解读

步骤2:收集数据

机器学习的核心在于数据。让我们以一个简单的示例开始:预测房屋价格。我们将使用一个包含房屋特征和对应价格的数据集。

# 导入必要的库
import numpy as np

# 生成示例数据
# 特征:房屋面积
# 标签:房屋价格
X = np.array([1400, 1600, 1700, 1875, 1100, 1550, 2350, 2450, 1425])
y = np.array([245000, 312000, 279000, 308000, 199000, 219000, 405000, 324000, 319000])
AI 代码解读

在上述代码中,我们生成了一些示例数据,其中X是房屋的面积,y是对应的价格。

步骤3:选择模型

在机器学习中,模型是我们用来预测结果的算法。让我们选择一个线性回归模型来预测房屋价格。

from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()
AI 代码解读

步骤4:训练模型

现在,我们将使用我们的数据训练模型。

# 训练模型
model.fit(X.reshape(-1, 1), y)
AI 代码解读

步骤5:预测结果

训练完成后,我们可以使用模型来进行预测。

# 预测房屋价格
area_to_predict = np.array([2000])
predicted_price = model.predict(area_to_predict.reshape(-1, 1))

print("预测的房屋价格:", predicted_price)
AI 代码解读

ai.png

拓展与分析

在本教程中,我们只是简单地介绍了机器学习的基本流程,实际应用要更加复杂。以下是一些拓展和深入学习的建议:

  1. 数据预处理: 真实数据往往会有噪音和缺失值。学习如何进行数据清洗和预处理,以提高模型的性能。

  2. 特征工程: 数据的质量和特征选择会影响模型的准确性。学习如何选择合适的特征以及如何进行特征工程。

  3. 模型调参: 模型有很多参数需要调整,以获得最佳性能。学习如何使用交叉验证等技术来选择最佳参数。

  4. 更复杂的模型: 线性回归只是机器学习模型中的一个简单示例。学习其他类型的模型,如决策树、随机森林、神经网络等。

  5. 深度学习: 深度学习是机器学习的一个分支,近年来取得了巨大的成功。学习如何使用深度学习框架(如TensorFlow、PyTorch)构建复杂的神经网络。

结论

通过这个简单的机器学习教程,我们初步了解了从数据收集、选择模型到训练和预测的基本流程。机器学习是一个广阔的领域,有很多知识和技能需要深入学习。希望本教程能为初学者提供一个入门的指引,引导大家探索更多有关机器学习的知识。感谢您阅读本文,如果您有任何问题或想法,请在评论区与我分享!让我们一起踏上机器学习的旅程,构建属于自己的AI。

目录
打赏
0
1
1
0
15
分享
相关文章
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
130 46
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
199 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
本文探讨了多智能体系统中记忆机制的设计与实现,提出构建精细化记忆体系以模拟人类认知过程。文章分析了上下文窗口限制的技术挑战,并介绍了四种记忆类型:即时工作记忆、情节记忆、程序性记忆和语义知识系统。通过基于文件的工作上下文记忆、模型上下文协议的数据库集成以及RAG系统等技术方案,满足不同记忆需求。此外,高级技术如动态示例选择、记忆蒸馏和冲突解决机制进一步提升系统智能化水平。总结指出,这些技术推动智能体向更接近人类认知的复杂记忆处理机制发展,为人工智能开辟新路径。
185 5
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
162 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等