【C++】再谈模板,深入理解C++模板

简介: 【C++】再谈模板,深入理解C++模板

typename和class的区别

在C++中,typename和class关键字都可以用于模板参数声明,它们的作用是相同的,用于指定一个类型参数。但是,在一些情况下,typename比class更加灵活。


首先,当模板参数是一个嵌套类型的时候,必须使用typename关键字来告诉编译器这是一个类型而不是一个静态成员变量或者函数。例如:

template<class Container>
void Print(const Container& v)
{
  // 编译不确定Container::const_iterator是类型还是对象
  // typename就是明确告诉编译器这里是类型,等模板实例化再去找
  typename Container::const_iterator it = v.begin(); //必须使用 typename 关键字
  auto it = v.begin();//当然使用auto就不会有以上的各种问题
  while (it != v.end())
  {
    cout << *it << " ";
    ++it;
  }
  cout << endl;
}

补充】:当模板参数是一个模板类型的时候,必须使用class关键字来指定这个模板参数。例如:

template <class T, template <class> class Container>
class MyClass {
public:
    Container<T> c;
};

在这个例子中,Container是一个模板类,它接受一个类型参数,因此必须使用class关键字来指定。

总的来说,虽然在大多数情况下typenameclass可以互换使用,但是在一些特殊情况下,必须使用其中的一个关键字来保证代码正确性。

非类型模板参数

  • 模板参数分类类型形参与非类型形参。
  • 类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。
  • 非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。
  • 静态栈是一种使用数组实现的栈,它的大小在编译时确定。我们可以使用非类型模板参数来指定静态栈的大小。下面是一个简单的静态栈的实现:
template <typename T, int N>
class StaticStack {
public:
    void push(const T& value) {
        if (size_ < N) {
            data_[size_++] = value;
        } else {
            cout<<"StaticStack is full"<<endl;
        }
    }
    void pop() {
        if (size_ > 0) {
            --size_;
        } else {
            cout<<"StaticStack is empty"<<endl;
        }
    }
    T& top() {
        if (size_ > 0) {
            return data_[size_ - 1];
        } else {
            cout<<"StaticStack is empty"<<endl;
        }
    }
    bool empty() const {
        return size_ == 0;
    }
    int size() const {
        return size_;
    }
private:
    T data_[N];
    int size_ = 0;
};
  • 在这个例子中,StaticStack是一个模板类,它接受两个参数:T表示栈中元素的类型,N表示栈的大小。data_是一个长度为N的数组,用于存储栈中的元素。其他成员函数实现了栈的基本操作。


我们可以使用这个静态栈来存储任何类型的数据,并且在编译时指定栈的大小。例如,下面的代码创建了一个能够存储10个整数的静态栈:

StaticStack<int, 10> s;
s.push(1);
s.push(2);
s.push(3);
std::cout << s.top() << std::endl; // 输出 3
s.pop();
std::cout << s.top() << std::endl; // 输出 2

在这个例子中,我们使用了非类型模板参数10来指定静态栈的大小。这使得我们可以在编译时就确定静态栈的大小,从而避免了动态分配内存的开销,提高了代码的效率。


【注意】:


浮点数、类对象以及字符串是不允许作为非类型模板参数的。

非类型的模板参数必须在编译期就能确认结果。

模板的特化

在C++中,模板的特化是指为某些特定的模板参数提供一个专门的实现。模板特化可以用于优化代码、解决特殊情况下的问题等。


模板特化有两种形式:完全特化和部分特化。完全特化是指为某些特定的模板参数提供一个完全不同的实现,而部分特化是指为某些特定的模板参数提供一个更为通用的实现。


函数模板特化

函数模板的特化步骤:


  1. 1.必须要先有一个基础的函数模板
  2. 2.关键字template后面接一对空的尖括号<>
  3. 3.函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 4.函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
template<class T>
bool Less(T left, T right)
{
    return left < right;
}
// 函数模板的特化
template<>
bool Less<int*>(int* left, int* right)
{
  return *left < *right;
}

但是一般函数遇到需要特化的情况可以直接重载:

template<class T>
bool Less(T left, T right)
{
    return left < right;
}
template<class T>
bool Less(T* left, T* right)
{
    return *left < *right;
}
int main()
{
  cout << Less(1, 2) << endl;
  int a = 1, b = 2;
  cout << Less(&a, &b) << endl;
  double c = 1.1, d = 2.2;
  cout << Less(&c, &d) << endl;
  return 0;
}

类模板特化

全特化

全特化是指为某些特定的模板参数提供一个完全不同的实现。在C++中,全特化是指为所有的模板参数提供一个专门的实现。全特化可以用于优化代码、解决特殊情况下的问题等。

下面是一个使用全特化的例子:

template <typename T>
class MyClass {
public:
    void print() {
        std::cout << "Generic implementation" << std::endl;
    }
};
template <>
class MyClass<int> {
public:
    void print() {
        std::cout << "Specialized implementation for int" << std::endl;
    }
};
template <>
class MyClass<double> {
public:
    void print() {
        std::cout << "Specialized implementation for double" << std::endl;
    }
};
int main() {
    MyClass<char> c1;
    c1.print(); // 输出 "Generic implementation"
    MyClass<int> c2;
    c2.print(); // 输出 "Specialized implementation for int"
    MyClass<double> c3;
    c3.print(); // 输出 "Specialized implementation for double"
    return 0;
}

在这个例子中,MyClass是一个模板类,我们为MyClass<int>和MyClass<double>提供了专门的实现。当我们创建一个MyClass<int>或者MyClass<double>对象时,它会调用对应的专门实现;而对于其他类型的对象则会使用通用的实现。


需要注意的是,在使用全特化时,必须使用空的模板参数列表来表示这是一个特化版本。例如,上面例子中的template <> class MyClass<int>和template <> class MyClass<double>就是空的模板参数列表。


总的来说,全特化可以使得模板更加灵活和通用,同时也可以优化代码性能。但是,在使用全特化时需要谨慎,避免过度使用导致代码难以维护。

偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

template<class T1, class T2>
class Data
{
public:
    Data() { cout << "Data<T1, T2>" << endl; }
private:
    T1 _d1;
    T2 _d2;
};

偏特化有两种表现方式:

  • 部分特化
    将模板参数类表中的一部分参数特化。
// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:
    Data() { cout << "Data<T1, int>" << endl; }
private:
    T1 _d1;
    int _d2;
};

参数更进一步的限制

偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:
    Data() { cout << "Data<T1*, T2*>" << endl; }
private:
    T1 _d1;
    T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
    Data(const T1& d1, const T2& d2)
        : _d1(d1)
        , _d2(d2)
    {
        cout << "Data<T1&, T2&>" << endl;
    }
private:
    const T1& _d1;
    const T2& _d2;
};
void test()
{
    Data<double, int> d1; // 调用特化的int版本
    Data<int, double> d2; // 调用基础的模板
    Data<int*, int*> d3; // 调用特化的指针版本
    Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

模板分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式

模板的分离编译

//a.h
template<class T>
T Add(const T& left, const T& right);
//a.cpp
template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
//Test.cpp
#include"a.h"
int main()
{
    Add(1, 2);
    Add(1.0, 2.0);
    return 0;
}

我们以上面这个例子来测试一下模板分离编译>

可以发现这里报错了。

解决方法

  1. 1. 将声明和定义放到一个文件 xxx.cpp 里面或者xxx.h其实也是可以的。推荐使用这种。
  2. 2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。
template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
template int Add<int>(const int& left, const int& right);//显示实例化
template double Add<double>(const double& left, const double& right);

这样实例化之后就可以正常编译运行了。

总结

【优点】:

  1. 1.模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
  2. 2.增强了代码的灵活性

【缺点】:

  1. 1.模板会导致代码膨胀问题,也会导致编译时间变长
  2. 2.出现模板编译错误时,错误信息非常凌乱,不易定位错误
相关文章
|
3月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
127 10
|
5月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
6月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
69 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
37 3
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
35 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
24 1
|
3月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
58 9
|
3月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
76 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
3月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
102 2