排序算法——参考《王道考研》+《大话数据结构》

简介: 排序算法——参考《王道考研》+《大话数据结构》

一、简述

昨天面试写一个笔试题,题目是:列举几种排序算法并指出它的时间复杂度。 鸭儿哟,我居然忘地差不多了,所以今天特地来总结一波。话不多说:直接low它。

二、排序框架

基本概念和外部排序,我们“从长计议”,今天我们直接low内部排序。我们将以一个A[n]数组为例排序此数组,当然这里需要回顾C语言的一个知识点:为什么传递数组形参,需要指定其长度? 答:当数组做参数时候,不论是:int a[] int *a 都只是传递一个指针,它指向的是已经在其他地方分配好的内存空间。形参只是一个指针,它指向的是已经在其他地方分配好的内存空间,即:指向数组的第一个元素,并无法知道这个数组有多长,所以需要显式的参数传递给函数。
在这里插入图片描述

三、插入排序(直接插入、折半插入、希尔)

中心思想: 每次将一个待排序的记录L(i)按照关键字大小插入前面已排好的子序列L[1...i-1],直到全部记录插入完成。
备注: 为什么我们要从L[1]位置而不是L[0]开始排序呢?目的:设置一个哨兵 在移动的过程中,可以作为 “临时缓冲区” 来放置可能会被操作的元素,具体如何使用,我们后续有具体介绍。
在这里插入图片描述

1、直接插入排序

步骤:

1) 查找出L(i)L[1..i-1]的插入位置k
2) 将L[k-1]中的所有元素依次后移一个位置。
3) 将L(i)复制到L(k)

代码:

void InsertSort(ElemType A[],int n)
{
   
   
    int i,j;
    for(i=2,i<=n;i++)
    {
   
   
        if(A[i]<A[i-1])
        {
   
   
            A[0]=A[i];
            for(j=i-1;A[0]<A[j];--j)
            {
   
   
                A[j+1]=A[j];
            }
            A[j+1]=A[0];
        }
    }
}

代码分析:

说实话,初学此排序算法的时候,看到这个代码我是懵逼的,心中无数个疑问:为啥i=2? A[0]=A[i]?虽然以及明白了插入排序的思想,但是真正落实到代码,可就盖了帽了😅,那么我们就依次来分析分析这个让人晕厥的代码。
在这里插入图片描述
①②for(i=2;i<=n;i++)循环:
疑问①:i=2为什么是从第2个元素,也就是数组第3个位置开始的?
答:A[0]位置我们留做哨兵了,A[1]位置是排序元素的第一个元素,我们由中心思想知道:该数组分为3个部分:有序序列、待排元素、无序序列。所以我们知道,第一个元素很明显不需要排序,此刻它就是有序序列,自然而然,第二个元素就是第一个被排序元素,所以从i=2也就是A[2]开始排序。
疑问②: i<=n 为啥就不是i<n?i<n+1呢?
答:众所周知,for循环的第二个条件是用来判断循环终止的条件,即:我们要知道在排序过程中循环执行到哪里停止了,很明显,数组A[]中只有n个元素需要排序,自然而然,到第 n个元素截至。你写i<n+1固然也可以,但是没有更好的体现,到n个元素截至。

if(A[i]<A[i-1])判断语句:
疑问③: 这个语句用意何在?
答:我们必须时刻谨记:该数组分为三个部分:有序序列、待排元素、无序序列 。所以:A[i]是我们的待排元素,而A[i-1]是我们的有序序列的最后一个元素(并且是有序中最大的元素)。如果我们的待排元素A[i]比有序最大的元素还大A[i-1],那么就不需要任何操作,反之:A[i]<A[i-1] 就需要进入if语句进一步操作。

A[0]=A[i]赋值语句:
疑问④: 为什么要把A[i]的值赋值给哨兵A[0]?为什么不是别的?
答:回顾中心思想,我们要在有序序列中插入一个元素,那么有序序列就应该向后移动一个位置,自然而然,A[i]就被A[i-1]覆盖了,未雨绸缪,我们就应该提前用哨兵把待插入元素A[i]给记录下来。

for(j=i-1;A[0]<A[j];j--) A[j+1]=A[j]循环语句的用意:
疑问⑤: 为什么有这个循环语句呢?
答:很明显此刻的A[0]就是待排元素,并且循环得初识条件是从i-1即:有序序列的最后一个元素开始的,所以很明显这个循环的目的是为了:在有序序列中给待排元素找到合适的位置,然后进行操作。并且这个位置就是A[j]
疑问⑤: 为什么要让A[j+1]=A[j]呢?
答:很明显,每循环1次,如果能执行,我们就得把A[j]这个位置空出来,因为它可能是最终位置的预备役,然后把A[j]的位置给向右移动到A[j+1],直到找到一个最终的位置 ,的,实在不好描述,不如去找个动画。这是来自:qinglv1的博客
在这里插入图片描述
⑥:A[j+1]=A[0]赋值语句**
疑问⑥:A[j+1]=A[0],为啥不是:A[j]=A[0]?不是说A[j]才是最终位置吗?
答: 在for循环语句中,只要进入循环,就要最终执行j--语句,此刻的A[j+1]实则是A[j-1+1]的结果。我们来验证一下:
在这里插入图片描述

时间复杂度和稳定性分析:

空间效率: 仅仅使用了常数个辅助单元,因而空间复杂度为O(1)
时间效率: O(n2) 最好情况:都有序,O(n) 最坏情况:与有序相反。
稳定性: 由于每次插入元素时总是从后向前比较再移动,所以不会出现相同元素相对位置发生变化地情况,所以是稳定的

2、折半插入排序(顺序存储的表)

回顾直接插入排序算法:1)从前面的有序序列中找到待插入位置 2)将待插入元素复制到表中的插入位置
在算法中我们注意到:总是边比较边移动元素。所以我们引入了折半插入,即:先找到位置,然后统一地移动待插入位置之后的所有元素。
中心思想: 先折半查找出元素的待插入位置,然后统一地移动待插入位置之后地所有元素。

void InsertSort(ElemType A[],int n)
{
   
   
    int i,j,low,high,mid;
    for(i=2;i<=n;i++)
    {
   
   
        A[0]=A[i];
        low=1;high=i-1;
        while(low<=high)
        {
   
   
            mid=(low+high)/2;
            if(A[mid]>A[0]) high=mid-1;
            else low=mid+1;
        }
        for(j=i-1;j>=high+1;--j)
        {
   
   
            A[j+1]=A[j];
        }
        A[high+1]=A[0];
    }
}

代码分析:

在这里插入图片描述

时间复杂度和稳定性分析:

上述算法看出,折半插入排序仅仅减少了比较元素的次数,约为:O(nlog2n),但是元素的移动次数未改变,他依旧依赖于排序表的初识状态。因此,折半插入排序的时间复杂度仍然是:O(n2);并且也是一种稳定的算法。

3、希尔排序(不稳定)

费事,希尔排序,也是换个花样玩插入排序,就不多赘述,直接上《王道考研》教材图:需要注意的是这是一种不稳定的排序方法
在这里插入图片描述

代码分析:

void ShellSort(ElemType A[],int n)
{
   
   
    for(dk=n/2,dk>=1;dk=dk/2)
    {
   
   
        for(i=dk+1,i<=n;++i)
        {
   
   
            if(A[i]<A[i-dk])
            {
   
   
                A[0]=A[i];
                for(j=i-dk;j>0&&A[0]<A[j];j-=dk)
                    {
   
       A[j+dk]=A[j];    }
                A[j+dk]=A[0];
            }
        }
    }
}

在这里插入图片描述

时间复杂度和稳定性分析:

在这里插入图片描述
在这里插入图片描述

四、交换排序(冒泡,快排)

所谓交换,我初学的时候会有点疑惑,上面所提到的插入排序不是也涉及到交换元素了吗?其实到后续我们发现,真交换排序,每一次比较,都可能会然他交换位置。

1.冒泡排序

冒泡排序 (Bubble Sort) 一种交换排序,它的基本思想是:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止。冒泡的实现在细节上可以有很多种变化,我们将分别就3种不同的冒泡实现代码,来讲解冒泡排序的思想。这里,我们就先来看看比较容易理解的一段。

初阶冒泡排序:
void BubbleSort0(ElemType A[],int n)
{
   
   
int i,j;
for(int i=1;i<n,++i)
{
   
   
    for(int j=i+1;j<n;++j)
    {
   
   
        if(a[i]>a[j])
        {
   
   
            swap(a[i],a[j]);
        }
    }
}
}

这段代码严格意义上来说,不算是标准的冒泡排序算法,因为它不满足“两两比较相邻记录”的冒泡排序思想,它更应该是简单的交换排序而已。它的思路就是让每一个关键字,都和它后面的每一个关键字比较,如果大则交换,这样第一位置的关键字在一次循环后一定变成最小值。
在这里插入图片描述

中阶冒泡排序:
void BubbleSort0(ElemType A[],int n)
{
   
   
int i,j;
for(int i=1;i<n,++i)
{
   
   
    for(int j=n-1;j>=i;--j)//j是从后往前循环
    {
   
   
        if(a[j]>a[j+1])//若后者大于前者
        {
   
   
            swap(a[j],a[j+1]);
        }
    }
}
}

在这里插入图片描述

高阶冒泡排序:
void BubbleSort0(ElemType A[],int n)
{
   
   
int i,j;
Status flag=true;
for(int i=1;i<n&&flag=true,++i)
{
   
   
flag=false;//用户标记是否交换
    for(int j=n-1;j>=i;--j)//j是从后往前循环
    {
   
   
        if(a[j]>a[j+1])//若后者大于前者
        {
   
   
            swap(a[j],a[j+1]);
            flag=true;
        }
    }
}
}

这样的冒泡程序是否还可以优化呢?答案是肯定的。试想一-下,如果我们待排序的序列是{2,1,3,4,5,6,7,8,9},也就是说,除了第一和第二的关键字需要交换外,别的都已经是正常的顺序。当i=1时,交换了2和1,此时序列已经有序,但是算法仍然不依不饶地将i=29以及每个循环中的j循环都执行了一遍,尽管并没有交换数据,但是之后的大量比较还是大大地多余了。所以设置一个flag来标记是否改变。
在这里插入图片描述

时间复杂度和稳定性分析:

空间效率: 仅仅使用了常数个辅助单元,因而空间复杂度为O(1)
时间效率: O(n2) 最好情况:都有序,O(n) 最坏情况:与有序相反。
稳定性: 由于i>jA[i]=A[j]时候,不会发生交换,所以是稳定的
特点: 冒泡排序中所产生的有序子序列一定是全局有序的(不同于直接插入排序),也就是说,有序子序列中的所有元素的关键字一定小于或大于无序子序列中所有元素的关键字,这样每趟排序都会将一个元素放置到其最终的位置上。

2.快速排序(重要)

一句话:快排是最经典,最牛的排序算法,学排序不学快排就白学了。

思想:

《王道考研》
在这里插入图片描述
《大话数据结构》

过程示意图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码分析:

在这里插入图片描述
在这里插入图片描述

算法性能分析:

在这里插入图片描述

相关文章
|
25天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
25天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
25天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
25天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
23天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
109 9
|
13天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
22 1
|
16天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
19天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
21天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
47 4
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
33 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
下一篇
无影云桌面