初识Hadoop,走进大数据世界

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文章属于Hadoop系列文章,分享Hadoop相关知识。后续文章中会继续分享Hadoop的组件、MapReduce、HDFS、HBase、Flume、Pig、Spark、Hadoop集群管理系统以及案例项目等。想学习大数据的同学希望可以<font color="red">点赞、收藏、持续关注</font>不迷路。

本文章属于Hadoop系列文章,分享Hadoop相关知识。后续文章中会继续分享Hadoop的组件、MapReduce、HDFS、HBase、Flume、Pig、Spark、Hadoop集群管理系统以及案例项目等。想学习大数据的同学希望可以点赞、收藏、持续关注不迷路。

在古时候,人们用牛来拉重物,当一头牛拉不动一根圆木时,人们从来没有考虑过要想方设法培育出一种更强壮的牛。同理,我们也不该想方设法打造什么超级计算机,而应该千方百计综合利用更多计算机来解决问题。

数据!数据!

在这里插入图片描述

我们生活在这个数据大爆炸的时代,很难估算全球的电子设备存储量。根据国际数据公司(IDC)曾经发布的报告,2013年统计出全球数据总量为4.4ZB,预测到2020年数据量将会达到44ZB,1ZB等于1000EB,等于1 000 000PB,等于大家所熟悉的10亿TB,这远远超过了全世界任意一块硬盘所能保存的数据量。

数据“洪流”有很多来源,以下面列出为例:

  • 纽约证交所每天产生的交易数据大约的4TB到5TB之间。
  • FaceBook存储的照片超过2400亿张,并以每月至少7PB的速度增长。
  • 互联网档案馆存储的数据约为18PB。
  • 瑞士日内瓦附近的大型强子对撞机每年产生数据越30PB。

还有其他大量的数据,比如作为物联网一部分的机器设备产生的日志、RFID读卡器、车载GPS等等。

组织或企业要想在未来取得成功,不仅需要管理好自己的数据,更需要从其他渠道获取有价值的信息。现在得益于开放的互联网,我们已经可以从各个地方获取到需要的数据,这是个好消息,但不幸的是,我们必须想方设法好好的存储和分析这些数据。

遇到的问题

我们遇到的问题很简单,在硬盘存储容量多年来不断提升的同时,硬盘数据读取的速度却没有与时俱进。1990年,一个普通的硬盘可以存储1370MB的数据,传输速度为4.4 MB/s,因此只需要5分钟就可以读完整个硬盘的数据。20年过去了,1TB的硬盘成为主流,但其数据传输速度约为100 MB/s,读完整个硬盘至少需要花费2.5个小时。

一个很简单减少读取时间的办法是同时从多个硬盘上读数据。试想,如果有100个硬盘,每个硬盘存储1%的数据,并行读取,那么不到两分钟就可以读完所有数据。仅使用硬盘容量的1%似乎很浪费,但是我们可以存储100个数据集,每个数据集1TB,并实现共享硬盘的读取。

Hadoop的出现

在这里插入图片描述

虽然如此,但要对多个硬盘中的数据并行进行读/写数据,还有很多问题要解决。

第一个需要解决的是硬件故障问题。一旦开始使用多个硬件,其中个别硬件就很有可能发生故障。为了避免数据丢失,最常见的做法是复制:系统保存数据的副本,一旦有系统发生故障,就可以用另外保存的副本。例如,冗余硬盘阵列(RAID)就是按这个原理实现的,另外,Hadoop的文件系统(HDFS)也是这一类。

第二个问题是大多数分析任务需要结合大部分数据共同完成分析,即从一个硬盘读取的数据可能需要从另外99个硬盘的数据结合使用,保证其正确性是一个非常大的挑战,MapReduce提出一个编程模型,该模型抽象出这些硬盘读/写问题,并转换为对一个数据集(由键-值对组成)的计算,有很高的可靠性。

简而言之,Hadoop为我们提供了一个可靠的且可扩展的存储与分析平台。此外,由于Hadoop运行在商用硬件上且是开源的,所以使用成本是在可接受范围内的。

相较于其他系统的优势

Hadoop不是历史上第一个用于数据存储和分析的分布式系统,但是Hadoop的一些特性将它和类似的系统区别开来。

关系型数据库

为什么不能用配有大量硬盘的数据库来进行大规模数据分析?为什么用Hadoop?

这两个问题的答案来自于计算机硬盘的发展趋势:寻址时间的提升远远不敌传输速率的提升,寻址是将磁头移动到硬盘的某个位置进行读/写操作的过程,它是导致硬盘操作延迟的主要原因,而传输速率取决于硬盘的带宽。
如果数据访问中包含大量的硬盘寻址,那么读取大量数据必然会花更长的时间。另一方面,如果数据库系统只更新一小部分记录,那么传统的B树更有优势。但数据库系统如果有大量的数据更新,B树的效率就明显落后于MapReduce了。在很多情况下,可以将MapReduce作为关系型数据库的补充,两个系统之间差异如下

关系型数据库 MapReduce
数据大小 GB PB
数据存取 交互式和批处理 批处理
更新 多次读/写 一次写入,多次读取
事务 ACID
结构 写时模式 读时模式
完整性
横向扩展 非线性 线性

网格计算

高性能计算和网格计算组织多年来一直在研究大规模数据处理,主要使用类似于消息传递接口的API。广义上讲,高性能计算采用的方法是将作业分散到集群的各个机器上,这些机器访问存储区域网络(SAN)所组成的共享文件系统,如果节点需要访问的数据量更庞大,很多节点就会因为网络带宽的瓶颈问题而不得不闲下来等数据。

Hadoop尽量在计算节点上存储数据,以实现数据的本地快速访问。数据本地化是Hadoop数据处理的核心,并因此获得良好的性能。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
162 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
66 2
|
23天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
79 2
|
24天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
61 1
|
1月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
61 1
|
1月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
76 5
|
1月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
107 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
11天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
93 7
|
11天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
26 2
下一篇
无影云桌面