YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

简介: YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

前言

前面简单介绍了YOLOv5的网络结构和创新点(直通车:【YOLO系列】YOLOv5超详细解读(网络详解))

在接下来我们会进入到YOLOv5更深一步的学习,首先从源码解读开始。

因为我是纯小白,刚开始下载完源码时真的一脸懵,所以就先从最基础的项目目录结构开始吧~因为相关解读不是很多,所以有的是我根据作者给的英文文档自己翻译的,如有不对之处欢迎大家指正呀!这篇只是简单介绍每个文件是做什么的,大体上了解这个项目,具体的代码详解后期会慢慢更新,也欢迎大家关注我的专栏,和我一起学习呀!

源码下载地址:mirrors / ultralytics / yolov5 · GitCode

🍀本人YOLOv5源码详解系列:  

YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py

YOLOv5源码逐行超详细注释与解读(3)——训练部分train.py

YOLOv5源码逐行超详细注释与解读(4)——验证部分val(test).py

YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py


一、项目目录结构

将源码下载好并配置好环境之后,就可以看到YOLOv5的整体目录如上图所示。

接下来我们逐一分析

1.1 .github文件夹

github是存放关于github上的一些“配置”的,这个不重要,我们可以不管它。


1.2 datasets

我们刚下载下来的源码是不包含这个文件夹的,datasets用来存放自己的数据集,分为images和labels两部分同时每一个文件夹下,又应该分为train,val。.cache文件为缓存文件,将数据加载到内存中,方便下次调用快速。可以自命名,比如我的火焰数据集就叫“fire_yolo_format”。


1.3 data文件夹

data文件夹主要是存放一些超参数的配置文件(如.yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称;还有一些官方提供测试的图片。YOLOv5 有大约 30 个超参数用于各种训练设置。更好的初始猜测会产生更好的最终结果,因此在演化之前正确初始化这些值很重要。

如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。不过要注意,自己的数据集不建议放在这个路径下面,建议把数据集放到YOLOv5项目的同级目录下面。

详解:

  • hyps文件夹# 存放yaml格式的超参数配置文件
  • hyps.scratch-high.yaml  # 数据增强高,适用于大型型号,即v3、v3-spp、v5l、v5x
  • hyps.scratch-low.yaml  # 数据增强低,适用于较小型号,即v5n、v5s
  • hyps.scratch-med.yaml  # 数据增强中,适用于中型型号。即v5m
  • images  # 存放着官方给的两张测试图片
  • scripts# 存放数据集和权重下载shell脚本
  • download_weights.sh  # 下载权重文件,包括五种大小的P5版和P6版以及分类器版
  • get_coco.sh  # 下载coco数据集
  • get_coco128.sh  # 下载coco128(只有128张)
  • Argoverse.yaml  # 后面的每个.yaml文件都对应一种标准数据集格式的数据
  • coco.yaml  # COCO数据集配置文件
  • coco128.yaml  # COCO128数据集配置文件
  • voc.yaml   # VOC数据集配置文件

1.4 models文件夹

models模型文件夹。里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测速度分别都是从快到慢,但是精确度分别是从低到高。如果训练自己的数据集的话,就需要修改这里面相对应的yaml文件来训练自己模型。

详解:

  • hub# 存放yolov5各版本目标检测网络模型配置文件
  • anchors.yaml  # COCO数据的默认锚点
  • yolov3-spp.yaml  # 带spp的yolov3
  • yolov3-tiny.yaml  # 精简版yolov3
  • yolov3.yaml  # yolov3
  • yolov5-bifpn.yaml # 带二值fpn的yolov5l
  • yolov5-fpn.yaml  # 带fpn的yolov5
  • yolov5-p2.yaml  # (P2, P3, P4, P5)都输出,宽深与large版本相同,相当于比large版本能检测更小物体
  • yolov5-p34.yaml# 只输出(P3, P4),宽深与small版本相同,相当于比small版本更专注于检测中小物体
  • yolov5-p6.yaml  # (P3, P4, P5, P6)都输出,宽深与large版本相同,相当于比large版本能检测更大物体
  • yolov5-p7.yaml  # (P3, P4, P5, P6, P7)都输出,宽深与large版本相同,相当于比large版本能检测更更大物体
  • yolov5-panet.yaml  # 带PANet的yolov5l
  • yolov5n6.yaml # (P3, P4, P5, P6)都输出,宽深与nano版本相同,相当于比nano版本能检测更大物体,anchor已预定义
  • yolov5s6.yaml  # (P3, P4, P5, P6)都输出,宽深与small版本相同,相当于比small版本能检测更大物体,anchor已预定义
  • yolov5m6.yaml  # (P3, P4, P5, P6)都输出,宽深与middle版本相同,相当于比middle版本能检测更大物体,anchor已预定义
  • yolov5l6.yaml  # (P3, P4, P5, P6)都输出,宽深与large版本相同,相当于比large版本能检测更大物体,anchor已预定义,推测是作者做实验的产物
  • yolov5x6.yaml  # (P3, P4, P5, P6)都输出,宽深与Xlarge版本相同,相当于比Xlarge版本能检测更大物体,anchor已预定义
  • yolov5s-ghost.yaml   # backbone的卷积换成了GhostNet形式的yolov5s,anchor已预定义
  • yolov5s-transformer.yaml  # backbone最后的C3卷积添加了Transformer模块的yolov5s,anchor已预定义
  • _int_.py   # 空的
  • common.py  # 放的是一些网络结构的定义通用模块,包括autopad、Conv、DWConv、TransformerLayer等
  • experimental.py   # 实验性质的代码,包括MixConv2d、跨层权重Sum等
  • tf.py  # tensorflow版的yolov5代码
  • yolo.py  # yolo的特定模块,包括BaseModel,DetectionModel,ClassificationModel,parse_model等
  • yolov5l.yaml   # yolov5l网络模型配置文件,large版本,深度1.0,宽度1.0
  • yolov5m.yaml   # yolov5m网络模型配置文件,middle版本,深度0.67,宽度0.75
  • yolov5n.yaml   # yolov5n网络模型配置文件,nano版本,深度0.33,宽度0.25
  • yolov5s.yaml  # yolov5s网络模型配置文件,small版本,深度0.33,宽度0.50
  • yolov5x.yaml  # yolov5x网络模型配置文件,Xlarge版本,深度1.33,宽度1.25

1.5 runs文件夹

runs是我们运行的时候的一些输出文件。每一次运行就会生成一个exp的文件夹。

详解:

  • detect  # 测试模型,输出图片并在图片中标注出物体和概率
  • train# 训练模型,输出内容,模型(最好、最新)权重、混淆矩阵、F1曲线、超参数文件、P曲线、R曲线、PR曲线、结果文件(loss值、P、R)等expn
  • expn   # 第n次实验数据
  • confusion_matrix.png   # 混淆矩阵
  • P_curve.png   # 准确率与置信度的关系图线
  • R_curve.png  # 精准率与置信度的关系图线
  • PR_curve.png  #  精准率与召回率的关系图线
  • F1_curve.png   # F1分数与置信度(x轴)之间的关系
  • labels_correlogram.jpg   # 预测标签长宽和位置分布
  • results.png   # 各种loss和metrics(p、r、mAP等,详见utils/metrics)曲线
  • results.csv  # 对应上面png的原始result数据
  • hyp.yaml  #  超参数记录文件
  • opt.yaml  # 模型可选项记录文件
  • train_batchx.jpg  # 训练集图像x(带标注)
  • val_batchx_labels.jpg  # 验证集图像x(带标注)
  • val_batchx_pred.jpg  # 验证集图像x(带预测标注)
  • weights  #  权重
  • best.pt  # 历史最好权重
  • last.pt   # 上次检测点权重
  • labels.jpg  # 4张图, 4张图,(1,1)表示每个类别的数据量

                                                              (1,2)真实标注的 bounding_box

                                                              (2,1) 真实标注的中心点坐标

                                                              (2,2)真实标注的矩阵宽高


1.6 utils文件夹

 

utils工具文件夹。存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

   详解:

  • aws   #  恢复中断训练,和aws平台使用相关的工具
  • flask_rest_api  # 和flask 相关的工具
  • google_app_engine   # 和谷歌app引擎相关的工具
  • loggers    # 日志打印
  • _init_.py    # notebook的初始化,检查系统软件和硬件
  • activations.py  #  激活函数
  • augmentations  # 存放各种图像增强技术
  • autoanchor.py    #  自动生成锚框
  • autobatch.py   # 自动生成批量大小
  • benchmarks.py   #  对模型进行性能评估(推理速度和内存占用上的评估
  • callbacks.py   #  回调函数,主要为logger服务
  • datasets# dateset和dateloader定义代码
  • downloads.py   #  谷歌云盘内容下载
  • general.py   # 全项目通用代码,相关实用函数实现
  • loss.py   #  存放各种损失函数
  • metrics.py   # 模型验证指标,包括ap,混淆矩阵等
  • plots.py   #  绘图相关函数,如绘制loss、ac曲线,还能单独将一个bbox存储为图像
  • torch_utils.py   # 辅助函数

1.7其他一级目录文件

详解:

  • .dockerignore   # docker的ignore文件
  • .gitattributes   # 用于将.ipynb后缀的文件剔除GitHub语言统计
  • .gitignore   #  docker的ignore文件
  • CONTRIBUTING.md  # markdown格式说明文档
  • detect.py   # 目标检测预测脚本
  • export.py  #  模型导出
  • hubconf.py  # pytorch hub相关
  • LICENSE   # 证书
  • README.md   # markdown格式说明文档
  • requirements.txt # 可以通过pip install requirement进行依赖环境下载
  • setup.cfg  #  项目打包文件
  • train.py   # 目标检测训练脚本
  • tutorial.ipynb  #  目标检测上手教程
  • val.py  # 目标检测验证脚本
  • yolov5s.pt   #  coco数据集模型预训练权重,运行代码的时候会自动从网上下载

本文参考:

YOLOV5学习笔记(四)——项目目录及代码讲解

YOLOv5-6.2版本代码Project逐文件详解

相关文章
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
681 29
|
8月前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
199 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
数据可视化 项目管理
项目计划与进度跟踪:甘特图的强大功能解析
甘特图是现代项目管理中不可或缺的工具,通过时间线和任务条直观展示项目进度,支持任务分解、依赖关系管理和进度跟踪。结合板栗看板,可实现任务可视化与实时协作,提升团队效率。定期更新甘特图并灵活应对变化,确保项目顺利推进。
|
9月前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
285 6
|
8月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
1528 0

推荐镜像

更多
  • DNS