【YOLO系列】YOLOv5超详细解读(网络详解)

简介: 【YOLO系列】YOLOv5超详细解读(网络详解)

前言

吼吼!终于来到了YOLOv5啦!

首先,一个热知识:YOLOv5没有发表正式论文哦~

为什么呢?可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧,hh


前期回顾:

【YOLO系列】YOLOv4论文超详细解读2(网络详解)


【YOLO系列】YOLOv4论文超详细解读1(翻译 +学习笔记)

【YOLO系列】YOLOv3论文超详细解读(翻译 +学习笔记)


【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)


【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)

🍀本人YOLOv5源码详解系列:

YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py

YOLOv5源码逐行超详细注释与解读(3)——训练部分train.py

YOLOv5源码逐行超详细注释与解读(4)——验证部分val(test).py

YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py

🌟本人YOLOv5入门实践系列:

YOLOv5入门实践(1)——手把手带你环境配置搭建

YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集

YOLOv5入门实践(3)——手把手教你划分自己的数据集

YOLOv5入门实践(4)——手把手教你训练自己的数据集

YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)

 🌟本人YOLOv5改进系列:

YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析

YOLOv5改进系列(1)——添加SE注意力机制

YOLOv5改进系列(2)——添加CBAM注意力机制

YOLOv5改进系列(3)——添加CA注意力机制

YOLOv5改进系列(4)——添加ECA注意力机制

YOLOv5改进系列(5)——替换主干网络之 MobileNetV3

YOLOv5改进系列(6)——替换主干网络之 ShuffleNetV2

YOLOv5改进系列(7)——添加SimAM注意力机制

YOLOv5改进系列(8)——添加SOCA注意力机制

YOLOv5改进系列(9)——替换主干网络之EfficientNetv2

YOLOv5改进系列(10)——替换主干网络之GhostNet

YOLOv5改进系列(11)——添加损失函数之EIoU、AlphaIoU、SIoU、WIoU

YOLOv5改进系列(12)——更换Neck之BiFPN

YOLOv5改进系列(13)——更换激活函数之SiLU,ReLU,ELU,Hardswish,Mish,Softplus,AconC系列等

YOLOv5改进系列(14)——更换NMS(非极大抑制)之 DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS 、SIoU-NMS、Soft-NMS

YOLOv5改进系列(15)——增加小目标检测层

YOLOv5改进系列(16)——添加EMA注意力机制(ICASSP2023|实测涨点)

YOLOv5改进系列(17)——更换IoU之MPDIoU(ELSEVIER 2023|超越WIoU、EIoU等|实测涨点)

YOLOv5改进系列(18)——更换Neck之AFPN(全新渐进特征金字塔|超越PAFPN|实测涨点)

YOLOv5改进系列(19)——替换主干网络之Swin TransformerV1(参数量更小的ViT模型)

YOLOv5改进系列(20)——添加BiFormer注意力机制(CVPR2023|小目标涨点神器)

YOLOv5改进系列(21)——替换主干网络之RepViT(清华 ICCV 2023|最新开源移动端ViT)

持续更新中。。。

一、YOLOv5的网络结构

YOLOv5特点: 合适于移动端部署,模型小,速度快

YOLOv5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 就和我们买衣服的尺码大小排序一样,YOLOv5s网络是YOLOv5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。

YOLOv5s的网络结构如下:

(1)输入端 : Mosaic数据增强、自适应锚框计算、自适应图片缩放

(2)Backbone : Focus结构,CSP结构

(3)Neck : FPN+PAN结构

(4)Head : CIOU_Loss

基本组件:

  • Focus:基本上就是YOLO v2的passthrough。
  • CBL:由Conv+Bn+Leaky_relu激活函数三者组成。
  • CSP1_X:借鉴CSPNet网络结构,由三个卷积层和X个Res unint模块Concate组成。
  • CSP2_X:不再用Res unint模块,而是改为CBL。
  • SPP:采用1×1,5×5,9×9,13×13的最大池化的方式,进行多尺度融合。

YOLO5算法性能测试图:


二、输入端

(1)Mosaic数据增强

YOLOv5在输入端采用了Mosaic数据增强Mosaic 数据增强算法将多张图片按照一定比例组合成一张图片,使模型在更小的范围内识别目标。Mosaic 数据增强算法参考 CutMix数据增强算法。CutMix数据增强算法使用两张图片进行拼接,而 Mosaic 数据增强算法一般使用四张进行拼接,但两者的算法原理是非常相似的。

Mosaic数据增强的主要步骤为:

(1)随机选取图片拼接基准点坐标(xc,yc),另随机选取四张图片。

(2)四张图片根据基准点,分别经过尺寸调整和比例缩放后,放置在指定尺寸的大图的左上,右上,左下,右下位置。

(3)根据每张图片的尺寸变换方式,将映射关系对应到图片标签上。

(4)依据指定的横纵坐标,对大图进行拼接。处理超过边界的检测框坐标。

采用Mosaic数据增强的方式有几个优点:

(1)丰富数据集: 随机使用4张图像,随机缩放后随机拼接,增加很多小目标,大大增加了数据多样性。

(2)增强模型鲁棒性: 混合四张具有不同语义信息的图片,可以让模型检测超出常规语境的目标。

(3)加强批归一化层(Batch Normalization)的效果: 当模型设置 BN 操作后,训练时会尽可能增大批样本总量(BatchSize),因为 BN 原理为计算每一个特征层的均值和方差,如果批样本总量越大,那么 BN 计算的均值和方差就越接近于整个数据集的均值和方差,效果越好。

(4)Mosaic 数据增强算法有利于提升小目标检测性能: Mosaic 数据增强图像由四张原始图像拼接而成,这样每张图像会有更大概率包含小目标,从而提升了模型的检测能力。


(2)自适应锚框计算

之前我们学的 YOLOv3、YOLOv4,对于不同的数据集,都会计算先验框 anchor。然后在训练时,网络会在 anchor 的基础上进行预测,输出预测框,再和标签框进行对比,最后就进行梯度的反向传播。

在 YOLOv3、YOLOv4 中,训练不同的数据集时,是使用单独的脚本进行初始锚框的计算在 YOLOv5 中,则是将此功能嵌入到整个训练代码里中。所以在每次训练开始之前,它都会根据不同的数据集来自适应计算 anchor。

but,如果觉得计算的锚框效果并不好,那你也可以在代码中将此功能关闭哈~

自适应的计算具体过程:

   ①获取数据集中所有目标的宽和高。

   ②将每张图片中按照等比例缩放的方式到 resize 指定大小,这里保证宽高中的最大值符合指定大小。

   ③将 bboxes 从相对坐标改成绝对坐标,这里乘以的是缩放后的宽高。

   ④筛选 bboxes,保留宽高都大于等于两个像素的 bboxes。

   ⑤使用 k-means 聚类三方得到n个 anchors,与YOLOv3、YOLOv4 操作一样。

   ⑥使用遗传算法随机对 anchors 的宽高进行变异。倘若变异后的效果好,就将变异后的结果赋值给 anchors;如果变异后效果变差就跳过,默认变异1000次。这里是使用 anchor_fitness 方法计算得到的适应度 fitness,然后再进行评估。


(3)自适应图片缩放

步骤:

(1) 根据原始图片大小以及输入到网络的图片大小计算缩放比例

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

(2) 根据原始图片大小与缩放比例计算缩放后的图片大小

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

(3) 计算黑边填充数值

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

注意:

(1)Yolov5中填充的是灰色,即(114,114,114)。

(2)训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

(3)为什么np.mod函数的后面用32?

因为YOLOv5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。以免产生尺度太小走不完stride(filter在原图上扫描时,需要跳跃的格数)的问题,再进行取余。


三、Backbone

(1)Focus结构

Focus模块在YOLOv5中是图片进入Backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长得差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。

以YOLOv5s为例,原始的640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过一次卷积操作,最终变成320 × 320 × 32的特征图。

切片操作如下:

作用:可以使信息不丢失的情况下提高计算力

不足:Focus 对某些设备不支持且不友好,开销很大,另外切片对不齐的话模型就崩了。

后期改进:在新版中,YOLOv5 将Focus 模块替换成了一个 6 x 6 的卷积层。两者的计算量是等价的,但是对于一些 GPU 设备,使用 6 x 6 的卷积会更加高效。


(2)CSP结构

YOLOv4网络结构中,借鉴了CSPNet的设计思路,在主干网络中设计了CSP结构。

YOLOv5与YOLOv4不同点在于,YOLOv4中只有主干网络使用了CSP结构。 而YOLOv5中设计了两种CSP结构,以YOLOv5s网络为例,CSP1_ X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。


四、Neck

YOLOv5现在的Neck和YOLOv4中一样,都采用FPN+PAN的结构。但是在它的基础上做了一些改进操作:YOLOV4的Neck结构中,采用的都是普通的卷积操作而YOLOV5的Neck中,采用CSPNet设计的CSP2结构,从而加强了网络特征融合能力。

结构如下图所示,FPN层自顶向下传达强语义特征,而PAN塔自底向上传达定位特征:


五、Head

(1)Bounding box损失函数

YOLO v5采用CIOU_LOSS 作为bounding box 的损失函数。(关于IOU_ Loss、GIOU_ Loss、DIOU_ Loss以及CIOU_Loss的介绍,请看YOLOv4那一篇:【YOLO系列】YOLOv4论文超详细解读2(网络详解))


(2)NMS非极大值抑制

NMS 的本质是搜索局部极大值,抑制非极大值元素。

非极大值抑制,主要就是用来抑制检测时冗余的框。因为在目标检测中,在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,所以我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。

算法流程:

 1.对所有预测框的置信度降序排序

 2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的 IOU

 3.根据步骤2中计算的 IOU 去除重叠度高的,IOU > threshold 阈值就直接删除

 4.剩下的预测框返回第1步,直到没有剩下的为止


SoftNMS:

当两个目标靠的非常近时,置信度低的会被置信度高的框所抑制,那么当两个目标靠的十分近的时候就只会识别出一个 BBox。为了解决这个问题,可以使用 softNMS。

它的基本思想是用稍低一点的分数来代替原有的分数,而不是像 NMS 一样直接置零。


六、训练策略

(1)多尺度训练(Multi-scale training)。如果网络的输入是416 x 416。那么训练的时候就会从 0.5 x 416 到 1.5 x 416 中任意取值,但所取的值都是32的整数倍。

(2)训练开始前使用 warmup 进行训练。在模型预训练阶段,先使用较小的学习率训练一些epochs或者steps (如4个 epoch 或10000个 step),再修改为预先设置的学习率进行训练。

(3)使用了 cosine 学习率下降策略(Cosine LR scheduler)。

(4)采用了 EMA 更新权重(Exponential Moving Average)。相当于训练时给参数赋予一个动量,这样更新起来就会更加平滑。

(5)使用了 amp 进行混合精度训练(Mixed precision)。能够减少显存的占用并且加快训练速度,但是需要 GPU 支持。


总结一下,YOLO v5和前YOLO系列相比的改进:

  • (1) 增加了正样本:方法是邻域的正样本anchor匹配策略。
  • (2) 通过灵活的配置参数,可以得到不同复杂度的模型
  • (3) 通过一些内置的超参优化策略,提升整体性能
  • (4) 和yolov4一样,都用了mosaic增强,提升小物体检测性能
相关文章
|
5月前
|
编解码 缓存 计算机视觉
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1
|
5月前
|
算法 PyTorch 计算机视觉
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
|
5月前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
5月前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
2月前
|
计算机视觉
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
这篇文章讨论了在yolov5项目中,如何避免使用网络摄像机而改用自带的本地摄像机进行实时目标检测,并提供了解决摄像头打开错误的具体步骤和代码示例。
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
|
5月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
242 5
|
5月前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 将backbone替换为MobileNetV3【小白必备教程+附完整代码】
本文介绍了将YOLOv5的backbone替换为MobileNetV3以提升目标检测性能的教程。MobileNetV3采用倒残差结构、Squeeze-and-Excitation模块和Hard-Swish激活函数,实现更高性能和更低计算成本。文中提供了详细的代码实现,包括MobileNetV3的关键组件和YOLOv5的配置修改,便于读者实践。此外,还分享了完整代码链接和进一步的进阶策略,适合深度学习初学者和进阶者学习YOLO系列。
|
5月前
|
机器学习/深度学习 算法 Go
YOLOv5网络结构解析
YOLOv5网络结构解析
|
2天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益严重。本文将从网络安全漏洞、加密技术和安全意识三个方面,探讨如何保护个人信息和网络安全。我们将通过实例分析,了解网络攻击者如何利用安全漏洞进行攻击,以及如何运用加密技术防止数据泄露。同时,我们还将讨论提高个人和企业的安全意识的重要性。
|
3天前
|
SQL 存储 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享##
网络安全与信息安全是当今数字化世界中的重要议题,涉及网络漏洞、加密技术和安全意识等方面。本文将探讨这些关键问题,旨在提升读者对网络安全的认知和应对能力。通过了解常见的网络安全漏洞类型及其影响,掌握加密技术的基本原理和应用,以及培养良好的安全意识和行为习惯,我们可以有效保护自己的隐私和数据安全。网络安全不仅仅是技术问题,更是每个人都应该关注和参与的重要事项。希望通过这篇文章的分享,读者能够增强自身的网络安全意识,共同构建一个更加安全的网络环境。 ##