Pytorch学习笔记(4):模型创建(Module)、模型容器(Containers)、AlexNet构建

简介: Pytorch学习笔记(4):模型创建(Module)、模型容器(Containers)、AlexNet构建


前期回顾:

Pytorch学习笔记(1):基本概念、安装、张量操作、逻辑回归

Pytorch学习笔记(2):数据读取机制(DataLoader与Dataset)

Pytorch学习笔记(3):图像的预处理(transforms)


一、网络模型的创建步骤

网络创建流程:


模型构建的两个要素:

  • 构建子模块:在自己建立的模型(继承nn.Module)的_init_()方法
  • 拼接子模块:是在模型的forward()方法中

以LeNet模型为例:

init函数中构建子模块,构建网络需要的卷积层、池化层、激活函数等

    def __init__(self, classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, classes)

forward函数中拼接子模块 ,就是模型的实现

 def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out

二、nn.Mudule的属性

在模型的概念当中,有一个非常重要的概念叫做nn.Module, 我们所有的模型,所有的网络层都是继承于这个类的。

•  torch.nn: 这是Pytorch的神经网络模块, 这里的Module就是它的子模块之一,另外还有几个与Module并列的子模块, 这些子模块协同工作,各司其职。

nn.Module中,有8个重要的属性, 用于管理整个模型,他们都是以有序字典的形式存在着:

•  _parameters: 存储管理属于nn.Parameter类的属性,例如权值,偏置这些参数

•  _modules: 存储管理nn.Module类, 比如LeNet中,会构建子模块,卷积层,池化层,就会存储在_modules中

•  _buffers:存储管理缓冲属性, 如BN层中的running_mean, std等都会存在这里面

•  ***_hook:存储管理钩子函数(5个与hooks有关的字典,这个先不用管)

nn.Module属性构建:

在nn.Module类中进行属性赋值时,被setattr函数拦截,在该函数中,判断即将要赋值的这个数据类型是否是nn.Parameter类,是则存储到parameters这个字典中;如果是nn.Module类,则存储在module这个字典中进行管理

nn.module总结:

  • 一个module可以包含多个子module(LeNet包含卷积层,池化层,全连接层)
  • 一个module相当于一个运算, 必须实现forward函数(从计算图的角度去理解)
  • 每个module都有8个字典管理它的属性(最常用的就是_parameters_modules

具体代码段如下:

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

三、模型容器Containers

3.1 nn.Sequential

nn.Sequential nn.module的容器,用于按顺序包装一组网络层

以LeNet为例,将卷积池化放到一个sequential中进行特征提取,将全连接层放到一个sequential中进行分类,然后将这两个sequential拼接起来,就是LeNet网络

(1)输入数据类型非字典

用sequential容器构建包装子模型:

'''------------Sequential---------------'''
class LeNetSequential(nn.Module):
    def __init__(self, classes):
        super(LeNetSequential, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),)
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes),)
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

可以看到,LeNet在这里分成了两大部分:

  • 第一部分是features模块,用于特征提取
  • 第二部分是classifier部分,用于分类

每一部分都是各种网络的堆叠,然后用sequential包装起来。 然后它的forward函数也比较简单, 只需要features处理输出,然后形状变换,然后classifier就完成了。

进入sequential类的init函数,调用init函数构建相应的属性,得到八个有序字典。

首先判断输入的参数的数据类型是否为有序字典,如果为有序字典,则可以对网络层进行命名操作,如果输入不为字典,则执行else操作

在for循环中将网络层添加到sequential中

 def __init__(self, *args: Any):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

调试中可以看出,每个网络层都被加入到module中,但此时网络层的对应的索引都为序号。

打印网络层,我们可以看到:

从中我们可以看出,每个网络层都是用序号来索引的,如果网络层过多,则很难通过序号去索引网络层,故可以对网络层进行命名。


(2)输入数据类型为字典

对sequential输入一个有序的字典来对网络层进行命名:

class LeNetSequentialOrderDict(nn.Module):
    def __init__(self, classes):
        super(LeNetSequentialOrderDict, self).__init__()
        self.features = nn.Sequential(OrderedDict({
            'conv1': nn.Conv2d(3, 6, 5),
            'relu1': nn.ReLU(inplace=True),
            'pool1': nn.MaxPool2d(kernel_size=2, stride=2),
            'conv2': nn.Conv2d(6, 16, 5),
            'relu2': nn.ReLU(inplace=True),
            'pool2': nn.MaxPool2d(kernel_size=2, stride=2),
        }))
        self.classifier = nn.Sequential(OrderedDict({
            'fc1': nn.Linear(16*5*5, 120),
            'relu3': nn.ReLU(),
            'fc2': nn.Linear(120, 84),
            'relu4': nn.ReLU(inplace=True),
            'fc3': nn.Linear(84, classes),
        }))
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

这里面Sequential包装的就是一个有序的字典, 字典中是网络名:网络层的形式。通过这个就可以对每一层网络进行命名

 def __init__(self, *args: Any):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

调试结果中可以看出,网络层被写入sequential,注意,每个网络层前面都有单独的命名。不同于前面的序号索引:

打印网络层,我们可以看到,不同于之前,每个网络层都有自己的名字,可以更方便的通过网络名来索引网络:

总结——sequential

nn.sequential是nn.module的容器,用于按顺序包装一组网络层

  • 顺序性:各网络层之间严格按照顺序构建
  • 自带forward():自带的forward里,通过for循环依次执行前向传播运算

3.2 nn.ModuleList

nn.ModuleList是nn.module的容器,用于包装一组网络层,以迭代方式调用网络层

主要方法:

  • append():在ModuleList后面添加网络层
  • extend():拼接两个ModuleList
  • insert():指定在ModuleList中位置插入网络层

例:我们使用ModuleList来循环迭代的实现一个20个全连接层的网络的构建。

'''-------- ModuleList----------'''
class ModuleList(nn.Module):
    def __init__(self):
        super(ModuleList, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])
    def forward(self, x):
        for i, linear in enumerate(self.linears):
            x = linear(x)
        return x
net = ModuleList()
print(net)
fake_data = torch.ones((10, 10))
output = net(fake_data)
print(output)

进入container的modulelist类

将网络层加入到module中

    def __init__(self, modules: Optional[Iterable[Module]] = None) -> None:
        super(ModuleList, self).__init__()
        if modules is not None:
            self += modules

打印网络层,我们可以看到:


3.3 nn.ModuleDict

nn.ModuleDict是nn.module的容器,用于包装一组网络层,以索引方式调用网络层。

主要方法:

  • clear():清空ModuleDict
  • items():返回可迭代的键值对(key-value pairs)
  • keys():返回字典的键(key)
  • values():返回字典的值(values)
  • pop():返回一对键值,并从字典中删除

具体代码如下:

'''-----------ModuleDict---------------'''
class ModuleDict(nn.Module):
    def __init__(self):
        super(ModuleDict, self).__init__()
        self.choices = nn.ModuleDict({
            'conv': nn.Conv2d(10, 10, 3),
            'pool': nn.MaxPool2d(3)
        })
        self.activations = nn.ModuleDict({
            'relu': nn.ReLU(),
            'prelu': nn.PReLU()
        })
    def forward(self, x, choice, act):
        x = self.choices[choice](x)
        x = self.activations[act](x)
        return x
net = ModuleDict()
fake_img = torch.randn((4, 10, 32, 32))
output = net(fake_img, 'conv', 'relu')    # 在这里可以选择我们的层进行组合
print(output)

上面通过self.choices这个ModuleDict可以选择卷积或者池化

下面通过self.activations这个ModuleDict可以选取是用哪个激活函数

这在选择网络层的时候挺实用,比如要做时间序列预测的时候,我们往往会用到GRU或者LSTM, 我们就可以通过这种方式来对比哪种网络的效果好。 而具体选择哪一层是前向传播那完成,会看到多了两个参数。

打印网络层,我们可以看到:


容器总结

nn.sequential:顺序性,各网络层之间严格按照顺序执行,常用于block构建

nn.ModuleList:迭代性,常用于大量重复网络构建,通过for循环实现重复构建

nn.ModuleDict:索引性,常用于可选择的网络层


四、 AlexNet构建

关于AlexNet的网络结构详解可参考我这篇文章:经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)

下面看看AlexNet的源代码:

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )
    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

本文参考:

[PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module - 知乎 (zhihu.com)

Pytorch基础学习(第三章-Pytorch模型搭建)_nn.maxpool2d(2)

相关文章
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
PyTorch中的`nn.AdaptiveAvgPool2d()`函数用于实现自适应平均池化,能够将输入特征图调整到指定的输出尺寸,而不需要手动计算池化核大小和步长。
97 1
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
153 2
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
78 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
这篇博客文章详细介绍了PyTorch中的nn.MaxPool2d()函数,包括其语法格式、参数解释和具体代码示例,旨在指导读者理解和使用这个二维最大池化函数。
105 0
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
本文介绍了PyTorch中的BatchNorm2d模块,它用于卷积层后的数据归一化处理,以稳定网络性能,并讨论了其参数如num_features、eps和momentum,以及affine参数对权重和偏置的影响。
135 0
Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
121 0
Pytorch学习笔记(二):nn.Conv2d()函数详解
|
1天前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
15 5
|
1月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
356 1
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
|
19天前
|
Kubernetes 监控 数据中心
容器化与微服务:构建高效开发环境的双剑合璧
【10月更文挑战第20天】本文探讨了容器化技术(如Docker和Kubernetes)与微服务架构的结合,如何共同构建高效、灵活的开发环境。容器化解决了环境一致性、快速部署和资源隔离的问题,而微服务架构则提升了系统的可维护性和可扩展性。通过容器编排工具、CI/CD流程和服务网格,两者的结合进一步优化了开发和运维效率。文章还分享了实施这两项技术的最佳实践和职业心得。
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch学习笔记(八):nn.ModuleList和nn.Sequential函数详解
PyTorch中的nn.ModuleList和nn.Sequential函数,包括它们的语法格式、参数解释和具体代码示例,展示了如何使用这些函数来构建和管理神经网络模型。
76 1

热门文章

最新文章