来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/ways-to-make-a-fair-array
题目描述
给你一个整数数组 nums 。你需要选择 恰好 一个下标(下标从 0 开始)并删除对应的元素。请注意剩下元素的下标可能会因为删除操作而发生改变。
比方说,如果 nums = [6,1,7,4,1] ,那么:
选择删除下标 1 ,剩下的数组为 nums = [6,7,4,1] 。
选择删除下标 2 ,剩下的数组为 nums = [6,1,4,1] 。
选择删除下标 4 ,剩下的数组为 nums = [6,1,7,4] 。
如果一个数组满足奇数下标元素的和与偶数下标元素的和相等,该数组就是一个 平衡数组 。
请你返回删除操作后,剩下的数组 nums 是 平衡数组 的 方案数 。
示例 1:
输入:nums = [2,1,6,4]
输出:1
解释:
删除下标 0 :[1,6,4] -> 偶数元素下标为:1 + 4 = 5 。奇数元素下标为:6 。不平衡。
删除下标 1 :[2,6,4] -> 偶数元素下标为:2 + 4 = 6 。奇数元素下标为:6 。平衡。
删除下标 2 :[2,1,4] -> 偶数元素下标为:2 + 4 = 6 。奇数元素下标为:1 。不平衡。
删除下标 3 :[2,1,6] -> 偶数元素下标为:2 + 6 = 8 。奇数元素下标为:1 。不平衡。
只有一种让剩余数组成为平衡数组的方案。
示例 2:
输入:nums = [1,1,1]
输出:3
解释:你可以删除任意元素,剩余数组都是平衡数组。
示例 3:
输入:nums = [1,2,3]
输出:0
解释:不管删除哪个元素,剩下数组都不是平衡数组。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 104
解题思路
最初的想法是暴力求解,只需要双重遍历就可以将所有的平衡数组求出来并且累加求出总个数,不出意料的暴力法超时了,时间复杂度为O(n2)。
在做暴力法的时候就发现程序运行过程中存在许多的重复计算,如i为1时前半部分奇数求和和i为2时前半部分的奇数求和仅仅差一个数值,所以每个平衡数组的求解过程存在一定的关联性。
已知平衡数组的条件是 i前奇数 + i后偶数 = i前偶数 + i后奇数, 那么我们可以对这个式子做一个变形,变成了i前奇数 - i前偶数 = i后奇数 - i后偶数,假设s1 = i前奇数 - i 前偶数,s2 = i后奇数 - i后偶数,就会发现s1和s2的变化其实与第i个数有关系,在判断i位置情况的时候,i为奇数,那么s1就减去i 位置的数,否则就加上i位置的数,当i +1位置 的时候,i为奇数 s2就会减去i位置的数,否则就加上i位置的数,另s = s1 - s2,那么在s = 0 的时候就是平衡数组,时间复杂度为O(n).
代码展示
class Solution { public: int waysToMakeFair(vector<int>& nums) { int iCount = 0; for(int i = 0; i < nums.size(); i++) { int iSum1 = 0, iSum2 = 0; for(int j = 0; j < nums.size(); j++) { if(j < i) { if(j % 2) iSum1 += nums[j]; else iSum2 += nums[j]; } if(j > i) { if(j % 2) iSum2 += nums[j]; else iSum1 += nums[j]; } } if(iSum1 == iSum2) iCount++; } return iCount; } };
数学推导法
class Solution { public: int waysToMakeFair(vector<int>& nums) { int iCount = 0, iSum = 0; for(int i = 0; i < nums.size(); i++) { iSum += i % 2 ? nums[i] : -1 * nums[i]; } for(int i = 0; i < nums.size(); i++) { iSum += i % 2 ? -1 * nums[i] : nums[i]; if(iSum == 0) iCount++; iSum += i % 2 ? -1 * nums[i] : nums[i]; } return iCount; } };
运行结果