令牌过滤器(token filter)
在 Elasticsearch 中,Token Filter 负责处理 Analyzer 的 Tokenizer 输出的单词或者 tokens。这些处理操作包括:转换为小写、删除停用词、添加同义词等。
大小写和停用词
以下是一个例子,我们创建一个自定义分析器来演示如何使用 lowercase
和 stop token filter
:
PUT /my_index { "settings": { "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "standard", "filter": ["lowercase", "english_stop"] } }, "filter": { "english_stop": { "type": "stop", //这里的 _english_ 是一个预设的停用词列表, //它包含了一些常用的英语停用词,如 "and", "is", "the" 等。 "stopwords": "_english_" } } } }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "my_analyzer" } } } }
在这个例子中,我们创建了一个名为 my_analyzer
的自定义分析器,它首先使用 standard
分词器将文本分割成 tokens,然后使用 lowercase
将所有 tokens 转换为小写形式,并使用 english_stop
过滤器移除英文停用词。
现在插入一条记录来测试:
PUT /my_index/_doc/1 { "text": "The Quick BROWN Fox Jumps Over THE Lazy Dog" }
上述例子中的文本 "The Quick BROWN Fox Jumps Over THE Lazy Dog",运用我们自定义的 my_analyzer 分析器后,停用词(如 "The", "Over")将被剔除,并且所有的单词都会被转化为小写。所以这句话在进行索引和搜索时,实际上会被处理成:["quick", "brown", "fox", "jumps", "lazy", "dog"]。
同义词
synonym token filter
可以帮助我们处理同义词。它可以将某个词或短语映射到其它的同义词。
例如,假设你有一个电子商务网站,并且你想让搜索 "cellphone" 的用户也能看到所有包含 "mobile", "smartphone" 的商品。你可以使用 synonym token filter
来实现这一目标。
以下是一个使用 synonym token filter
的例子:
PUT /my_index { "settings": { "analysis": { "filter": { "my_synonym_filter": { "type": "synonym", // "synonyms": ["赵,钱,孙,李=>吴", "周=>王"] //也可以像上面这种写法 //当字段中出现"赵"、"钱"、"孙"或"李"时,会被替换成"吴"进行索引; //当字段中出现"周"时,会被替换成"王"进行索引。 "synonyms": [ "cellphone, mobile, smartphone" ] } }, "analyzer": { "my_synonyms": { "tokenizer": "standard", "filter": [ "lowercase", "my_synonym_filter" ] } } } }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "my_synonyms" } } } }
在这个设置中,我们创建了一个名为 my_synonym_filter
的同义词过滤器,并定义了 "cellphone", "mobile", "smartphone" 是互为同义词。然后我们在 my_synonyms
分析器中使用了该过滤器。
所以现在,无论你是输入 "cellphone", "mobile", 还是 "smartphone" 搜索,Elasticsearch 都会将其视为相同的查询。
我们可以使用synonyms_path
指定同义词规则路径,这个文件中列出了所有你定义的同义词,每行都是一组同义词,各词之间用逗号分隔。
使用 synonyms_path
参数的主要优点是,你可以在不重启 Elasticsearch 或重新索引数据的情况下,通过更新这个文件来动态地改变同义词规则。
假设你有一个名为 synonyms.txt
的文件,内容如下:
cellphone, mobile, smartphone tv, telly, television
然后你可以这样配置你的 index:
PUT /my_index { "settings": { "index" : { "analysis" : { "analyzer" : { "my_analyzer" : { "tokenizer" : "standard", "filter" : ["lowercase", "my_synonym_filter"] } }, "filter" : { "my_synonym_filter" : { "type" : "synonym", "synonyms_path" : "analysis/synonyms.txt" } } } } }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "my_analyzer" } } } }
在这个设置中,我们创建了一个自定义分析器 my_analyzer
,并使用了一个自定义的同义词过滤器 my_synonym_filter
。过滤器中的 synonyms_path
参数指向了存放同义词的 synonyms.txt
文件。
注意:synonyms_path
是相对于 config
目录的路径。例如,如果你的 config
目录在 /etc/elasticsearch/
,那么 synonyms.txt
文件应该放在 /etc/elasticsearch/analysis/synonyms.txt
。
分词器(tokenizer)
在 Elasticsearch 中,分词器是用于将文本字段分解成独立的关键词(或称为 token)的组件。这是全文搜索中的一个重要过程。Elasticsearch 提供了多种内建的 tokenizer。
以下是一些常用的 tokenizer:
- Standard Tokenizer:它根据空白字符和大部分标点符号将文本划分为单词。这是默认的 tokenizer。
- Whitespace Tokenizer:仅根据空白字符(包括空格,tab,换行等)进行切分。
- Language Tokenizers:基于特定语言的规则来进行分词,如
english
、french
等。 - Keyword Tokenizer:它接收任何文本并作为一个整体输出,没有进行任何分词。
- Pattern Tokenizer:使用正则表达式来进行分词,可以自定义规则。
你可以根据不同的数据和查询需求,选择适当的 tokenizer。另外,也可以通过定义 custom analyzer 来混合使用 tokenizer 和 filter(比如 lowercase filter,stop words filter 等)以达到更复杂的分词需求。
自定义分词器:custom analyzer
在 Elasticsearch 中,你可以创建自定义分词器(Custom Analyzer)。一个自定义分词器由一个 tokenizer 和零个或多个 token filters 组成。tokenizer 负责将输入文本划分为一系列 token,然后 token filters 对这些 token 进行处理,比如转换成小写、删除停用词等。
以下是一个自定义分析器的例子:
PUT /my_index { "settings": { "analysis": { "filter": { "my_stopwords": { "type": "stop", "stopwords": ["the", "and"] } }, "analyzer": { "my_custom_analyzer": { "type": "custom", "tokenizer": "standard", "filter": [ "lowercase", "my_stopwords" ] } } } }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "my_custom_analyzer" } } } }
在这个配置中,我们首先定义了一个名为 my_stopwords
的停用词过滤器,包含两个停用词 "the" 和 "and"。然后我们创建了一个名为 my_custom_analyzer
的自定义分析器,其中使用了 standard tokenizer
以及 lowercase filter
和 my_stopwords filter
。
因此,在为字段 text
索引文本时,Elasticsearch 会首先使用 standard tokenizer
将文本切分为 tokens,然后将这些 tokens 转换为小写,并移除其中的 "the" 和 "and"。对于搜索查询也同样适用此规则。
中文分词器:ik分词
elasticsearch 默认的内置分词器对中文的分词效果可能并不理想,因为它们主要是针对英文等拉丁语系的文本设计的。如果要在中文文本上获得更好的分词效果,我们可以考虑使用中文专用的分词器。
IK 分词器是一个开源的中文分词器插件,特别为 Elasticsearch 设计和优化。它在中文文本的分词处理上表现出色,能够根据中文语言习惯进行精细的分词。
安装和部署
- ik下载地址:https://github.com/medcl/elasticsearch-analysis-ik
- 创建插件文件夹 cd your-es-root/plugins/ && mkdir ik
- 将插件解压缩到文件夹 your-es-root/plugins/ik
- 重新启动es
ik文件描述
- IKAnalyzer.cfg.xml:IK分词配置文件。
- main.dic:主词库。
- stopword.dic:英文停用词,不会建立在倒排索引中。
- quantifier.dic:特殊词库:计量单位等。
- suffix.dic:特殊词库:行政单位。
- surname.dic:特殊词库:百家姓。
- preposition:特殊词库:语气词。
ik提供的两种analyzer
- ik_max_word会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合,适合 Term Query。
- ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”,适合 Phrase 查询。
ik自定义词库
要使用 IK 分词器的自定义词库,需要对 IK 插件的配置文件进行修改。步骤如下:
- 找到你 Elasticsearch 安装目录下的
plugins
文件夹,然后打开ik
目录。 - 在
ik
目录中,你会找到名为config
的文件夹,这就是 IK 配置的位置。 - 在
config
文件夹中新建一个文本文件,比如叫做my_dict.dic
,然后在这个文件中加入你自己的词汇,每行一个词。 - 接着打开
IKAnalyzer.cfg.xml
配置文件,在标签内添加一行
my_dict.dic
,告诉 IK 分词器你的自定义词库在哪里。 - 保存修改并重启 Elasticsearch,这时就可以使用自定义的词库了。
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "[http://java.sun.com/dtd/properties.dtd](http://java.sun.com/dtd/properties.dtd)"> <properties> <comment>IK Analyzer 扩展配置</comment> <property name="ext_dict">my_dict.dic</property> <!--用户可以在这里配置自己的扩展字典 --> <property name="ext_stopwords"></property> <!--用户可以在这里配置自己的扩展停止词字典--> </properties>
上述配置告诉 IK 分词器使用 my_dict.dic
作为扩展字典,但没有设置扩展的停用词字典。
注意这种方式只支持静态词库,一旦词库文件更改,则需要重启 Elasticsearch 才能加载新的词条。
热更新
要修改词库,必须重启ES才能生效,有时我们会频繁更新词库,比较麻烦,更致命的是,es肯定是分布式的,可
能有数百个节点,我们不能每次都一个一个节点上面去修改。基于这种场景,我们可以使用热更新功能。
实现热更新有2种办法:基于远程词库和基于数据库。
基于远程词库
IK 分词器支持从远程 URL 下载扩展字典,这就可以用来实现词库的热更新。
在 IKAnalyzer.cfg.xml
配置文件中,你可以设置 ext_dict
和 ext_stopwords
属性为一个指向你的在线词库文件的 URL:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "[http://java.sun.com/dtd/properties.dtd](http://java.sun.com/dtd/properties.dtd)"> <properties> <comment>IK Analyzer 扩展配置</comment> <property name="ext_dict">[http://myserver.com/my_dict.dic](http://myserver.com/my_dict.dic)</property> <!--用户可以在这里配置远程扩展字典 --> <property name="ext_stopwords">[http://myserver.com/my_stopwords.dic](http://myserver.com/my_stopwords.dic)</property> <!--用户可以在这里配置远程扩展停止词字典--> </properties>
此设置告诉 IK 分词器从指定的 URL 下载词库。它会周期性地(默认每 60 秒)检查这些 URL,如果发现有更新,就重新下载并加载新的词库。
根据官方文档,该请求需要满足下列2点:
- 该 http 请求需要返回两个头部(header),一个是
Last-Modified
,一个是ETag
,这两者都是字符串类型,只要有一个发生变化,该插件就会去抓取新的分词进而更新词库。 - 该 http 请求返回的内容格式是一行一个分词,换行符用
\n
即可。
满足上面两点要求就可以实现热更新分词了,不需要重启 ES 实例。
可以将需要自动更新的热词放在一个 UTF-8 编码的 .txt 文件里,放在 nginx 或其他简易 http server 下,当 .txt 文件修改时,http server 会在客户端请求该文件时自动返回相应的 Last-Modified 和 ETag。可以另外做一个工具来从业务系统提取相关词汇,并更新这个 .txt 文件。
基于远程词库这种方式比较简单上手,但是也存在一些缺点:
缺点:
- 词库的管理不方便,要操作直接操作磁盘文件,检索页很麻烦。
- 文件的读写没有专门的优化性能不好。
- 多一层接口调用和网络传输。
基于数据库
另外一种方式是基于数据库,这种方式使用比较多,但需要修改ik插件源码,有一定复杂度。
基本思路是将词库维护在数据库(MySQL,Oracle等),修改ik源码去数据库加载词库,然后将源码重新打包引入到我们的elasticsearch中。
大概操作步骤如下:
- 获取 IK 项目源码:首先从 GitHub 或其他地方获取 IK 分词器插件的源码。
- 设置数据库连接:在代码中设置好你的数据库连接参数,如数据库地址、用户名、密码等。
- 编写读取数据库词库的函数:编写一个可以从数据库读取词库数据并转换为 IK 分词器可以使用的格式(比如 ArrayList)的函数。
- 修改字典加载部分的代码:找到 IK 源码中负责加载扩展字典的部分,原本这部分代码是将文件内容加载到内存中,现在改为调用你刚才编写的函数,从数据库中加载词库数据。
- 添加定时任务:添加一个定时任务,每隔一段时间重新执行一次上述加载操作,以实现词库的热更新。
- 编译和安装:完成上述修改后,按照 IK 插件的构建说明,使用 Maven 或其他工具将其编译成插件,然后安装到 Elasticsearch 中。
本篇文章就到这里,感谢阅读,如果本篇博客有任何错误和建议,欢迎给我留言指正。
有收获?希望老铁来个三连,给更多的同学看到这篇文章,顺便激励下我,嘻嘻。