【大数据】Apache Spark入门到实战 4

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据】Apache Spark入门到实战

创建 DataFrame

在 Scala 中,可以通过以下几种方式创建 DataFrame:

  1. 从现有的 RDD 转换而来。例如:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Create DataFrame").getOrCreate()
import spark.implicits._
case class Person(name: String, age: Int)
val rdd = spark.sparkContext.parallelize(Seq(Person("Alice", 25), Person("Bob", 30)))
val df = rdd.toDF()
df.show()
  1. 从外部数据源读取。例如,从 JSON 文件中读取数据并创建 DataFrame:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Create DataFrame").getOrCreate()
val df = spark.read.json("path/to/json/file")
df.show()
  1. 通过编程方式创建。例如,使用 createDataFrame 方法:
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
val spark = SparkSession.builder.appName("Create DataFrame").getOrCreate()
val schema = StructType(
  List(
    StructField("name", StringType, nullable = true),
    StructField("age", IntegerType, nullable = true)
  )
)
val data = Seq(Row("Alice", 25), Row("Bob", 30))
val rdd = spark.sparkContext.parallelize(data)
val df = spark.createDataFrame(rdd, schema)
df.show()

DSL & SQL

在 Spark 中,可以使用两种方式对 DataFrame 进行查询:DSL(Domain-Specific Language)和 SQL。

DSL 是一种特定领域语言,它提供了一组用于操作 DataFrame 的方法。例如,下面是一个使用 DSL 进行查询的例子:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("DSL and SQL").getOrCreate()
import spark.implicits._
val df = Seq(
  ("Alice", 25),
  ("Bob", 30),
  ("Charlie", 35)
).toDF("name", "age")
df.select("name", "age")
  .filter($"age" > 25)
  .show()

SQL 是一种结构化查询语言,它用于管理关系数据库系统。在 Spark 中,可以使用 SQL 对 DataFrame 进行查询。例如,下面是一个使用 SQL 进行查询的例子:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("DSL and SQL").getOrCreate()
import spark.implicits._
val df = Seq(
  ("Alice", 25),
  ("Bob", 30),
  ("Charlie", 35)
).toDF("name", "age")
df.createOrReplaceTempView("people")
spark.sql("SELECT name, age FROM people WHERE age > 25").show()

DSL 和 SQL 的区别在于语法和风格。DSL 使用方法调用链来构建查询,而 SQL 使用声明式语言来描述查询。选择哪种方式取决于个人喜好和使用场景。

Spark SQL 数据源

Spark SQL 支持多种数据源,包括 Parquet、JSON、CSV、JDBC、Hive 等。

下面是示例代码:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Data Sources Example").getOrCreate()
// Parquet
val df = spark.read.parquet("path/to/parquet/file")
// JSON 
val df = spark.read.json("path/to/json/file")
// CSV
val df = spark.read.option("header", "true").csv("path/to/csv/file")
// JDBC
val df = spark.read
  .format("jdbc")
  .option("url", "jdbc:mysql://host:port/database")
  .option("dbtable", "table")
  .option("user", "username")
  .option("password", "password")
  .load()
df.show()

load & save

在 Spark 中,load 函数用于从外部数据源读取数据并创建 DataFrame,而 save 函数用于将 DataFrame 保存到外部数据源。

下面是从 Parquet 文件中读取数据并创建 DataFrame 的示例代码:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Load and Save Example").getOrCreate()
val df = spark.read.load("path/to/parquet/file")
df.show()

下面是将 DataFrame 保存到 Parquet 文件的示例代码:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Load and Save Example").getOrCreate()
import spark.implicits._
val df = Seq(
  ("Alice", 25),
  ("Bob", 30),
  ("Charlie", 35)
).toDF("name", "age")
df.write.save("path/to/parquet/file")

函数

Spark SQL 提供了丰富的内置函数,包括数学函数、字符串函数、日期时间函数、聚合函数等。你可以在 Spark SQL 的官方文档中查看所有可用的内置函数。

此外,Spark SQL 还支持自定义函数(User-Defined Function,UDF),可以让用户编写自己的函数并在查询中使用。

下面是一个使用 SQL 语法编写自定义函数的示例代码:

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf
val spark = SparkSession.builder.appName("UDF Example").getOrCreate()
import spark.implicits._
val df = Seq(
  ("Alice", 25),
  ("Bob", 30),
  ("Charlie", 35)
).toDF("name", "age")
df.createOrReplaceTempView("people")
val square = udf((x: Int) => x * x)
spark.udf.register("square", square)
spark.sql("SELECT name, square(age) FROM people").show()

在这个示例中,我们首先定义了一个名为 square 的自定义函数,它接受一个整数参数并返回它的平方。然后,我们使用 createOrReplaceTempView 方法创建一个临时视图,并使用 udf.register 方法注册自定义函数。最后,我们使用 spark.sql 方法执行 SQL 查询,并在查询中调用自定义函数。

DataSet

DataSet 是 Spark 1.6 版本中引入的一种新的数据结构,它提供了 RDD 的强类型和 DataFrame 的查询优化能力。

创建DataSet

在 Scala 中,可以通过以下几种方式创建 DataSet:

  1. 从现有的 RDD 转换而来。例如:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Create DataSet").getOrCreate()
import spark.implicits._
case class Person(name: String, age: Int)
val rdd = spark.sparkContext.parallelize(Seq(Person("Alice", 25), Person("Bob", 30)))
val ds = rdd.toDS()
ds.show()
  1. 从外部数据源读取。例如,从 JSON 文件中读取数据并创建 DataSet:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Create DataSet").getOrCreate()
import spark.implicits._
case class Person(name: String, age: Long)
val ds = spark.read.json("path/to/json/file").as[Person]
ds.show()
  1. 通过编程方式创建。例如,使用 createDataset 方法:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Create DataSet").getOrCreate()
import spark.implicits._
case class Person(name: String, age: Int)
val data = Seq(Person("Alice", 25), Person("Bob", 30))
val ds = spark.createDataset(data)
ds.show()

DataSet和DataFrame区别

DataSet 和 DataFrame 都是 Spark 中用于处理结构化数据的数据结构。它们都提供了丰富的操作,包括筛选、聚合、分组、排序等。

它们之间的主要区别在于类型安全性。DataFrame 是一种弱类型的数据结构,它的列只有在运行时才能确定类型。这意味着,在编译时无法检测到类型错误,只有在运行时才会抛出异常。

而 DataSet 是一种强类型的数据结构,它的类型在编译时就已经确定。这意味着,如果你试图对一个不存在的列进行操作,或者对一个列进行错误的类型转换,编译器就会报错。

此外,DataSet 还提供了一些额外的操作,例如 map、flatMap、reduce 等。

RDD & DataFrame & Dataset 转化

RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换。

  • DataFrame/Dataset转RDD
val rdd1=testDF.rdd
val rdd2=testDS.rdd
  • RDD转DataFrame
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = rdd.map {line=>
      Coltest(line._1,line._2)
    }.toDS

可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可。

  • Dataset转DataFrame
import spark.implicits._
val testDF = testDS.toDF
  • DataFrame转Dataset
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest]

这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型在DataFrame需要针对各个字段处理时极为方便。

注意:在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDFtoDS无法使用。

Spark Streaming

Spark Streaming 的工作原理是将实时数据流拆分为小批量数据,并使用 Spark 引擎对这些小批量数据进行处理。这种微批处理(Micro-Batch Processing)的方式使得 Spark Streaming 能够以近乎实时的延迟处理大规模的数据流。

下面是一个简单的 Spark Streaming 示例代码:

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val conf = new SparkConf().setAppName("Spark Streaming Example")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()

我们首先创建了一个 StreamingContext 对象,并指定了批处理间隔为 1 秒。然后,我们使用 socketTextStream 方法从套接字源创建了一个 DStream。接下来,我们对 DStream 进行了一系列操作,包括 flatMap、map 和 reduceByKey。最后,我们使用 print 方法打印出单词计数的结果。

Spark Streaming 优缺点

Spark Streaming 作为一种实时流处理框架,具有以下优点:

  • 高性能:Spark Streaming 基于 Spark 引擎,能够快速处理大规模的数据流。
  • 易用性:Spark Streaming 提供了丰富的 API,可以让开发人员快速构建实时流处理应用。
  • 容错性:Spark Streaming 具有良好的容错性,能够在节点故障时自动恢复。
  • 集成性:Spark Streaming 能够与 Spark 生态系统中的其他组件(如 Spark SQL、MLlib 等)无缝集成。

但是,Spark Streaming 也有一些缺点:

  • 延迟:由于 Spark Streaming 基于微批处理模型,因此它的延迟相对较高。对于需要极低延迟的应用场景,Spark Streaming 可能不是最佳选择。
  • 复杂性:Spark Streaming 的配置和调优相对复杂,需要一定的经验和技能。

DStream

DStream(离散化流)是 Spark Streaming 中用于表示实时数据流的一种抽象。它由一系列连续的 RDD 组成,每个 RDD 包含一段时间内收集到的数据。

在 Spark Streaming 中,可以通过以下几种方式创建 DStream:

  1. 从输入源创建。例如,从套接字源创建 DStream:
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val conf = new SparkConf().setAppName("DStream Example")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
lines.print()
ssc.start()
ssc.awaitTermination()
  1. 通过转换操作创建。例如,对现有的 DStream 进行 map 操作:
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val conf = new SparkConf().setAppName("DStream Example")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
words.print()
ssc.start()
ssc.awaitTermination()
  1. 通过连接操作创建。例如,对两个 DStream 进行 union 操作:
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val conf = new SparkConf().setAppName("DStream Example")
val ssc = new StreamingContext(conf, Seconds(1))
val lines1 = ssc.socketTextStream("localhost", 9999)
val lines2 = ssc.socketTextStream("localhost", 9998)
val lines = lines1.union(lines2)
lines.print()
ssc.start()
ssc.awaitTermination()

总结:简单来说 DStream 就是对 RDD 的封装,你对 DStream 进行操作,就是对 RDD 进行操作。对于 DataFrame/DataSet/DStream 来说本质上都可以理解成 RDD

窗口函数

在 Spark Streaming 中,窗口函数用于对 DStream 中的数据进行窗口化处理。它允许你对一段时间内的数据进行聚合操作。

Spark Streaming 提供了多种窗口函数,包括:

  • window:返回一个新的 DStream,它包含了原始 DStream 中指定窗口大小和滑动间隔的数据。
  • countByWindow:返回一个新的单元素 DStream,它包含了原始 DStream 中指定窗口大小和滑动间隔的元素个数。
  • reduceByWindow:返回一个新的 DStream,它包含了原始 DStream 中指定窗口大小和滑动间隔的元素经过 reduce 函数处理后的结果。
  • reduceByKeyAndWindow:类似于 reduceByWindow,但是在进行 reduce 操作之前会先按照 key 进行分组。

下面是一个使用窗口函数的示例代码:

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val conf = new SparkConf().setAppName("Window Example")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKeyAndWindow((a: Int, b: Int) => a + b, Seconds(30), Seconds(10))
wordCounts.print()
ssc.start()
ssc.awaitTermination()

在这个示例中,我们首先创建了一个 DStream,并对其进行了一系列转换操作。然后,我们使用 reduceByKeyAndWindow 函数对 DStream 进行窗口化处理,指定了窗口大小为 30 秒,滑动间隔为 10 秒。最后,我们使用 print 方法打印出单词计数的结果。

输出操作

Spark Streaming允许DStream的数据输出到外部系统,如数据库或文件系统,输出的数据可以被外部系统所使用,该操作类似于RDD的输出操作。Spark Streaming支持以下输出操作:

  • print(): 打印DStream中每个RDD的前10个元素到控制台。
  • saveAsTextFiles(prefix, [suffix]): 将此DStream中每个RDD的所有元素以文本文件的形式保存。每个批次的数据都会保存在一个单独的目录中,目录名为:prefix-TIME_IN_MS[.suffix]
  • saveAsObjectFiles(prefix, [suffix]): 将此DStream中每个RDD的所有元素以Java对象序列化的形式保存。每个批次的数据都会保存在一个单独的目录中,目录名为:prefix-TIME_IN_MS[.suffix]
  • saveAsHadoopFiles(prefix, [suffix]): 将此DStream中每个RDD的所有元素以Hadoop文件(SequenceFile等)的形式保存。每个批次的数据都会保存在一个单独的目录中,目录名为:prefix-TIME_IN_MS[.suffix]
  • foreachRDD(func): 最通用的输出操作,将函数func应用于DStream中生成的每个RDD。通过此函数,可以将数据写入任何支持写入操作的数据源。

Structured Streaming

Structured Streaming 是 Spark 2.0 版本中引入的一种新的流处理引擎。它基于 Spark SQL 引擎,提供了一种声明式的 API 来处理结构化数据流。

与 Spark Streaming 相比,Structured Streaming 具有以下优点:

  • 易用性:Structured Streaming 提供了与 Spark SQL 相同的 API,可以让开发人员快速构建流处理应用。
  • 高性能:Structured Streaming 基于 Spark SQL 引擎,能够快速处理大规模的数据流。
  • 容错性:Structured Streaming 具有良好的容错性,能够在节点故障时自动恢复。
  • 端到端一致性:Structured Streaming 提供了端到端一致性保证,能够确保数据不丢失、不重复。

下面是一个简单的 Structured Streaming 示例代码:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Structured Streaming Example").getOrCreate()
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
import spark.implicits._
val words = lines.as[String].flatMap(_.split(" "))
val wordCounts = words.groupBy("value").count()
val query = wordCounts.writeStream
  .outputMode("complete")
  .format("console")
  .start()
query.awaitTermination()

在这个示例中,我们首先创建了一个 SparkSession 对象。然后,我们使用 readStream 方法从套接字源创建了一个 DataFrame。接下来,我们对 DataFrame 进行了一系列操作,包括 flatMap、groupBy 和 count。最后,我们使用 writeStream 方法将结果输出到控制台。

Structured Streaming 同样支持 DSL 和 SQL 语法

DSL 语法:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Structured Streaming Example").getOrCreate()
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
import spark.implicits._
val words = lines.as[String].flatMap(_.split(" "))
val wordCounts = words.groupBy("value").count()
val query = wordCounts.writeStream
  .outputMode("complete")
  .format("console")
  .start()
query.awaitTermination()

SQL 语法:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("Structured Streaming Example").getOrCreate()
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
lines.createOrReplaceTempView("lines")
val wordCounts = spark.sql(
  """
    |SELECT value, COUNT(*) as count
    |FROM (
    |    SELECT explode(split(value, ' ')) as value
    |    FROM lines
    |)
    |GROUP BY value
  """.stripMargin)
val query = wordCounts.writeStream
  .outputMode("complete")
  .format("console")
  .start()
query.awaitTermination()

Source

Structured Streaming 支持多种输入源,包括文件源(如文本文件、Parquet 文件、JSON 文件等)、Kafka、Socket 等。下面是一个使用 Scala 语言从 Kafka 中读取数据的例子:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("StructuredStreaming").getOrCreate()
// 订阅一个主题
val df = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
  .option("subscribe", "topic1")
  .load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .as[(String, String)]

Output

Structured Streaming 支持多种输出方式,包括控制台输出、内存输出、文件输出、数据源输出等。下面是将数据写入到 Parquet 文件中的例子:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("StructuredStreaming").getOrCreate()
// 从 socket 中读取数据
val lines = spark
  .readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
// 将数据写入到 Parquet 文件中
lines.writeStream
  .format("parquet")
  .option("path", "path/to/output/dir")
  .option("checkpointLocation", "path/to/checkpoint/dir")
  .start()

output mode

每当结果表更新时,我们都希望将更改后的结果行写入外部接收器。

Output mode 指定了数据写入输出接收器的方式。Structured Streaming 支持以下三种 output mode:

Output Mode 描述
Append 只将流 DataFrame/Dataset 中的新行写入接收器。
Complete 每当有更新时,将流 DataFrame/Dataset 中的所有行写入接收器。
Update 每当有更新时,只将流 DataFrame/Dataset 中更新的行写入接收器。

output sink

Output sink 指定了数据写入的位置。Structured Streaming 支持多种输出接收器,包括文件接收器、Kafka 接收器、Foreach 接收器、控制台接收器和内存接收器等。下面是一些使用 Scala 语言将数据写入到不同输出接收器中的例子:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("StructuredStreaming").getOrCreate()
// 从 socket 中读取数据
val lines = spark
  .readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
// 将数据写入到 Parquet 文件中
lines.writeStream
  .format("parquet")
  .option("path", "path/to/output/dir")
  .option("checkpointLocation", "path/to/checkpoint/dir")
  .start()
// 将数据写入到 Kafka 中
//selectExpr 是一个 DataFrame 的转换操作,它允许你使用 SQL 表达式来选择 DataFrame 中的列。
//selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") 表示选择 key 和 value 列,并将它们的类型转换为字符串类型。
//这是因为 Kafka 接收器要求数据必须是字符串类型或二进制类型。
lines.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .writeStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
  .option("topic", "topic1")
  .start()
// 将数据写入到控制台中
lines.writeStream
  .format("console")
  .start()
// 将数据写入到内存中
lines.writeStream
  .format("memory")
  .queryName("tableName")
  .start()

PV,UV统计

下面是用Structured Streaming实现PV,UV统计的例子,我们来感受实战下:

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
object PVUVExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder.appName("PVUVExample").getOrCreate()
    import spark.implicits._
    // 假设我们有一个包含用户ID和访问的URL的输入流
    val lines = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load()
    val data = lines.as[String].map(line => {
      val parts = line.split(",")
      (parts(0), parts(1))
    }).toDF("user", "url")
    // 计算PV
    val pv = data.groupBy("url").count().withColumnRenamed("count", "pv")
    val pvQuery = pv.writeStream.outputMode("complete").format("console").start()
    // 计算UV
    val uv = data.dropDuplicates().groupBy("url").count().withColumnRenamed("count", "uv")
    val uvQuery = uv.writeStream.outputMode("complete").format("console").start()
    pvQuery.awaitTermination()
    uvQuery.awaitTermination()
  }
}

这段代码演示了如何使用Structured Streaming对数据进行PV和UV统计。它首先从一个socket源读取数据,然后使用groupBycount对数据进行PV统计,最后使用dropDuplicatesgroupBycount对数据进行UV统计。

假设我们在本地启动了一个socket服务器,并向其发送以下数据:

user1,http://example.com/page1
user2,http://example.com/page1
user1,http://example.com/page2
user3,http://example.com/page1
user2,http://example.com/page2
user3,http://example.com/page2

那么程序将输出以下结果:

-------------------------------------------
Batch: 0
-------------------------------------------
+--------------------+---+
|                 url| pv|
+--------------------+---+
|http://example.co...|  3|
|http://example.co...|  3|
+--------------------+---+
-------------------------------------------
Batch: 0
-------------------------------------------
+--------------------+---+
|                 url| uv|
+--------------------+---+
|http://example.co...|  2|
|http://example.co...|  3|
+--------------------+---+

总结

总之,Spark是一个强大的大数据处理框架,它具有高性能、易用性和灵活性等优点。希望本文能够帮助你入门Spark,并在实际应用中发挥它的强大功能。如果你想深入学习Spark,可以参考官方文档和相关书籍,也可以加入Spark社区,与其他开发人员交流经验。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
17天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
52 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
17天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
62 2
|
17天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
57 1
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
18天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
48 1
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
30天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
588 13
Apache Flink 2.0-preview released
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
68 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多