开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,为您提供全方位的对话交互体验。

简介: 开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,为您提供全方位的对话交互体验。

dialogbot:开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,为您提供全方位的对话交互体验。

人机对话系统一直是AI的重要方向,图灵测试以对话检测机器是否拥有高度的智能。如何构建人机对话系统或者对话机器人呢?

  • 对话系统经过三代的演变:

    1. 规则对话系统:垂直领域可以利用模板匹配方法的匹配问句和相应的答案。优点是内部逻辑透明,易于分析调试,缺点是高度依赖专家干预,
      缺少灵活性和可可拓展性。
    2. 统计对话系统:基于部分可见马尔科夫决策过程的统计对话系统,先对问句进行贝叶斯推断,维护每轮对话状态,再跟进对话状态进行对话策略的选择,
      从而生成自然语言回复。基本形成现代的对话系统框架,它避免了对专家的高度依赖,缺点是模型难以维护,可拓展性比较受限。
    3. 深度对话系统:基本延续了统计对话系统的框架,但各个模型采用深度网络模型。利用了深度模型强大的表征能力,语言分类和生成能力大幅提高,
      缺点是需要大量标注数据才能有效训练模型。
  • 对话系统分为三类:

    • 问答型对话:多是一问一答,用户提问,系统通过对问题解析和查找知识库返回正确答案,如搜索。
    • 任务型对话:指由任务驱动的多轮对话,机器需要通过理解、主动询问、澄清等方式确定用户目标,然后查找知识库返回结果,完成用户需求。
      如:机器人售电影票。
    • 聊天型对话:目标是产生有趣且富有信息量的自然答复使人机对话持续下去,如小度音响。

1.问答型对话(Search Dialogue Bot)

1.1 本地检索问答

计算用户问句与问答库中问句的相似度,选择最相似的问句,给出其对应的答复。

句子相似度计算包括以下方法:

  • TFIDF
  • BM25
  • OneHot
  • Query Vector

1.2 网络检索问答

对百度、Bing的搜索结果摘要进行答案的检索

  • 百度搜索,包括百度知识图谱、百度诗词、百度万年历、百度计算器、百度知道
  • 微软Bing搜索,包括bing知识图谱、bing网典

1.3 任务型对话(Task Oriented Dialogue Bot)

  • End to End Memory Networks(memn2n)
  • BABi dataset

1.4 聊天型对话(Generative Dialogue Bot)

  • GPT2 Model
  • Sequence To Sequence Model(seq2seq)
  • Taobao dataset

2.Demo展示

Official Demo: https://www.mulanai.com/product/dialogbot/

The project is based on transformers 4.4.2+, torch 1.6.0+ and Python 3.6+.
Then, simply do:

pip3 install torch # conda install pytorch
pip3 install -U dialogbot

or

pip3 install torch # conda install pytorch
git clone https://github.com/shibing624/dialogbot.git
cd dialogbot
python3 setup.py install

3.应用场景展示

3.1 问答型对话(Search Bot)

from dialogbot import Bot

bot = Bot()
response = bot.answer('姚明多高呀?')
print(response)

output:

query: "姚明多高呀?"
answer: "226cm"

3.2 任务型对话(Task Bot)

3.3 聊天型对话(Generative Bot)

3.3.1 GPT2模型使用

基于GPT2生成模型训练的聊天型对话模型。

模型已经 release 到huggingface models:shibing624/gpt2-dialogbot-base-chinese

from dialogbot import GPTBot
bot = GPTBot()
r = bot.answer('亲 你吃了吗?', use_history=False)
print('gpt2', r)

output:

query: "亲 吃了吗?"
answer: "吃了"

3.3.2 GPT2模型fine-tune

  • 数据预处理
    在项目根目录下创建data文件夹,将原始训练语料命名为train.txt,存放在该目录下。train.txt的格式如下,每段闲聊之间间隔一行,格式如下:
    ```
    真想找你一起去看电影
    突然很想你
    我也很想你

想看你的美照
亲我一口就给你看
我亲两口
讨厌人家拿小拳拳捶你胸口

今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着

运行preprocess.py,对data/train.txt对话语料进行tokenize,然后进行序列化保存到data/train.pkl。train.pkl中序列化的对象的类型为List[List],记录对话列表中,每个对话包含的token。

cd dialogbot/gpt/
python preprocess.py --train_path data/train.txt --save_path data/train.pkl



* 训练模型
运行train.py,使用预处理后的数据,对模型进行自回归训练,模型保存在根目录下的model文件夹中。

在训练时,可以通过指定patience参数进行early stop。当patience=n时,若连续n个epoch,模型在验证集上的loss均没有下降,则进行early stop,停止训练。当patience=0时,不进行early stop。

代码中默认关闭了early stop,因为在实践中,early stop得到的模型的生成效果不一定会更好。

python train.py --epochs 40 --batch_size 8 --device 0,1 --train_path data/train.pkl

更多的训练参数介绍,可直接看train.py中的set_args()函数中的参数说明

### 3.3.3 预测模型(人机交互)
运行interact.py,使用训练好的模型,进行人机交互,输入q结束对话之后,聊天记录将保存到sample.txt文件中。

python interact.py --no_cuda --model_dir path_to_your_model

执行interact.py时,可以尝试通过调整topk、topp、repetition_penalty、max_history_len等参数,调整生成的效果。更多的参数介绍,可直接看interact.py的set_args()函数中的参数说明
如果要使用GPU进行生成,则不要调用--no_cuda参数,并且通过--device gpu_id来指定使用哪块GPU。


*  问答示例
- sample1

user :在干嘛
chatbot:睡觉
user :这么早就睡觉啦
chatbot:嗯啊你也早点睡啊
user :我再玩一会儿手机
chatbot:早点休息晚安
user :拜拜啦
chatbot:晚安晚安
user :多喝热水
chatbot:哈哈哈
user :多喝热水
chatbot:好的咯


- sample2

user :在吗
chatbot:在
user :我不开心
chatbot:怎么啦
user :最近好累啊
chatbot:是挺累的
user :作业好多啊
chatbot:还好还好
user :我觉得我快要挂科了
chatbot:我也是啊,但是我觉得我快熬出头了
user :不说了,我还有好多作业没写
chatbot:我也是啊好多啊
user :那先这样,下次再聊,再见了
chatbot:好哒


# 4.数据集

* 闲聊语料分享
|中文闲聊语料 | 数据集地址 |语料描述|
|---------|--------|--------|
|常见中文闲聊|[chinese_chatbot_corpus](https://github.com/codemayq/chinese_chatbot_corpus)|包含小黄鸡语料、豆瓣语料、电视剧对白语料、贴吧论坛回帖语料、微博语料、PTT八卦语料、青云语料等|
|50w中文闲聊语料 | [百度网盘【提取码:4g5e】](https://pan.baidu.com/s/1M87Zf9e8iBqqmfTkKBWBWA) 或 [GoogleDrive](https://drive.google.com/drive/folders/1QFRsftLNTR_D3T55mS_FocPEZI7khdST?usp=sharing) |包含50w个多轮对话的原始语料、预处理数据|
|100w中文闲聊语料 | [百度网盘【提取码:s908】](https://pan.baidu.com/s/1TvCQgJWuOoK2f5D95nH3xg) 或 [GoogleDrive](https://drive.google.com/drive/folders/1NU4KLDRxdOGINwxoHGWfVOfP0wL05gyj?usp=sharing)|包含100w个多轮对话的原始语料、预处理数据|


中文闲聊语料的内容样例如下:

谢谢你所做的一切
你开心就好
开心
嗯因为你的心里只有学习
某某某,还有你
这个某某某用的好

你们宿舍都是这么厉害的人吗
眼睛特别搞笑这土也不好捏但就是觉得挺可爱
特别可爱啊

今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着
```

  • 模型分享
模型 共享地址 模型描述
model_epoch40_50w shibing624/gpt2-dialogbot-base-chinese百度网盘(提取码:taqh)GoogleDrive 使用50w多轮对话语料训练了40个epoch,loss降到2.0左右。
  • Reference
  • Wen T H, Vandyke D, Mrksic N, et al. A Network-based End-to-End Trainable Task-oriented Dialogue System[J]. 2016.
  • How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
  • A. Bordes, Y. Boureau, J. Weston. Learning End-to-End Goal-Oriented Dialog 2016
  • Zhao T, Eskenazi M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning [J]. arXiv preprint arXiv:1606.02560, 2016.
  • Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation [J]. arXiv preprint arXiv:1604.06057, 2016.
  • BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
  • Deep Reinforcement Learning with Double Q-Learning
  • Deep Attention Recurrent Q-Network
  • SimpleDS: A Simple Deep Reinforcement Learning Dialogue System
  • Deep Reinforcement Learning with a Natural Language Action Space
  • Integrating User and Agent Models: A Deep Task-Oriented Dialogue System
    x
  • vyraun/chatbot-MemN2N-tensorflow
  • huggingface/transformers
  • Morizeyao/GPT2-Chinese
  • yangjianxin1/GPT2-chitchat

参考链接:https://github.com/shibing624/dialogbot

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关实践学习
阿里巴巴智能语音交互技术与应用
智能语音交互,是基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验。适用于多个应用场景中,包括智能问答、智能质检、法庭庭审实时记录、实时演讲字幕、访谈录音转写等。 本课程主要讲解智能语音相关技术,包括语音识别、人机交互、语音合成等。  
相关文章
|
8月前
|
机器人 API
钉钉里{"code: 400, 错误描述:机器人权限校验不通过;解决方案:请登陆开放平台后台,检查机器人是否归属于token对应的主应用名下 请问场景机器人-发消息-这个报错什么原因导致的啊?
钉钉里{"code: 400, 错误描述:机器人权限校验不通过;解决方案:请登陆开放平台后台,检查机器人是否归属于token对应的主应用名下 请问场景机器人-发消息-这个报错什么原因导致的啊?
462 0
|
7天前
|
数据采集 传感器 人工智能
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
AgiBot World 是智元机器人开源的百万真机数据集,旨在推动具身智能的发展,覆盖家居、餐饮、工业等五大核心场景。
55 9
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
|
23天前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
88 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
7月前
|
传感器 人工智能 算法
适应多形态多任务,最强开源机器人学习系统八爪鱼诞生
【6月更文挑战第6天】【八爪鱼开源机器人学习系统】由加州大学伯克利分校等机构研发,适用于多形态多任务,已在arXiv上发表。系统基于transformer,预训练于800k机器人轨迹数据集,能快速适应新环境,支持单臂、双机械臂等。特点是多形态适应、多任务处理、快速微调及开源可复现。实验显示其在9个平台有效,但仍需改进传感器处理和语言指令理解。论文链接:https://arxiv.org/pdf/2405.12213
129 1
|
4月前
|
人工智能 自然语言处理 机器人
谷歌将大模型集成在实体机器人中,能看、听、说执行57种任务
【9月更文挑战第17天】近年来,人工智能在多模态大模型领域取得显著进展。谷歌最新研发的Mobility VLA系统,将大模型与实体机器人结合,实现了视觉、语言和行动的融合,使机器人能理解并执行复杂多模态指令,如“我应该把这个放回哪里?”系统在真实环境测试中表现出色,但在计算资源、数据需求及伦理问题上仍面临挑战。相关论文发布于https://arxiv.org/abs/2407.07775。
87 9
|
7月前
|
机器人
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
【6月更文挑战第29天】北京大学研发的RoboMamba是新型机器人多模态大模型,融合Mamba SSM的高效推理与视觉编码器,提升复杂任务处理能力。通过微调策略,仅用少量参数即可快速习得操作技能,实现在通用及机器人场景的高效运行,推理速度提升7倍。尽管面临泛化和可解释性挑战,RoboMamba展示了多模态模型的新潜力。[论文链接:](https://arxiv.org/abs/2406.04339)
112 1
|
8月前
|
机器学习/深度学习 机器人
用MoE横扫99个子任务!浙大等提出全新通用机器人策略GeRM
【4月更文挑战第28天】浙江大学等研究团队提出的通用机器人模型GeRM,基于Transformer和Mixture-of-Experts(MoE)架构,能有效处理多种任务。通过离线强化学习,GeRM在99个子任务中展现出优越性能,优于单一专家网络策略,且具备高训练和推理效率。尽管需更多计算资源,但GeRM为多任务机器人技术带来了新突破,有望推动领域发展。[链接:https://arxiv.org/abs/2403.13358]
76 2
|
存储 人工智能 自然语言处理
把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10
就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑。这是一款无与伦比、超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的语言生成能力。
把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10
|
机器学习/深度学习 传感器 人工智能
【路径规划】基于Dubins实现多机器人任务分配和路径规划-速度约束与负载均衡附matlab代码
【路径规划】基于Dubins实现多机器人任务分配和路径规划-速度约束与负载均衡附matlab代码
|
传感器 人工智能 自动驾驶
机器人大牛Rodney Brooks体验Cruise无人车:避开「可怕」街区,难以应对施工场景
机器人大牛Rodney Brooks体验Cruise无人车:避开「可怕」街区,难以应对施工场景
110 0

热门文章

最新文章