基于GMM高斯混合模型的语音信息身份识别算法的matlab仿真

简介: 基于GMM高斯混合模型的语音信息身份识别算法的matlab仿真

1.算法理论概述
一、引言
语音信息身份识别是指通过声音信号对个体进行身份识别的过程。目前,语音信息身份识别已经成为语音处理领域的一个热门研究方向。在语音信息身份识别中,高斯混合模型(GMM)是一种被广泛应用的方法。本文将详细介绍基于GMM的语音信息身份识别算法的实现步骤和数学原理。

二、GMM模型
GMM模型是一种基于统计学的模型,常用于对多维数据进行建模。在语音信息身份识别中,GMM模型可以用于对语音信号进行建模和分类。GMM模型假设每个类别的数据是由多个高斯分布组成的混合分布,每个高斯分布表示该类别的一种特征。GMM模型可以用以下公式表示:

efc23bbd6193b5fccd398f519edaaf1b_82780907_202308122330130334388702_Expires=1691854813&Signature=CHi9ZP5IyG1pGlh2Isl1mcRGpm4%3D&domain=8.png

其中,$p(x)$表示数据$x$的概率密度函数,$M$表示高斯分布的数量,$w_i$表示第$i$个高斯分布的权重,$\mu_i$表示第$i$个高斯分布的均值,$\Sigma_i$表示第$i$个高斯分布的协方差矩阵,$\mathcal{N}(x|\mu_i,\Sigma_i)$表示以$\mu_i$为均值,$\Sigma_i$为协方差矩阵的高斯分布。

三、语音信息身份识别算法
基于GMM的语音信息身份识别算法的实现步骤如下:

提取语音特征
使用声学特征提取算法,如MFCC(Mel频率倒谱系数)算法,将语音信号转换为数值型的特征向量。MFCC算法将语音信号分帧,并对每一帧进行傅里叶变换,然后将频率轴上的能量值转换为Mel频率轴上的能量值,并计算其倒谱系数。最后,将每一帧的倒谱系数串联起来,得到该帧的MFCC特征向量。

训练GMM模型
使用训练数据集训练GMM模型。对于每个说话人,使用其训练集中的语音信号提取MFCC特征,并使用GMM模型对MFCC特征进行建模。对于每个说话人,GMM模型的高斯分布数量和协方差矩阵可以根据其训练集的大小和分布进行调整。

计算GMM得分
对于测试集中的每个语音信号,提取其MFCC特征,并使用GMM模型计算其GMM得分。对于每个说话人的GMM模型,根据其权重、均值和协方差矩阵,可以计算该语音信号在该说话人模型下的概率密度值,即GMM得分。对于每个说话人,选择其GMM得分最高的语音信号作为其身份识别结果。

2.算法运行软件版本
MATLAB2022a

3.算法运行效果图预览

2.jpeg
3.jpeg
4.png

4.部分核心程序

load data\train_data.mat; %加载训练数据
%遍历人
for ij=1:Pnum    
    ij%显示当前正在处理的人的序号
    idx1=1;%初始化MFCC特征矩阵的列下标
    idx2=1; 
    %遍历语音
      for jk=1:Tnum 
          speech  = tdata{ij}{jk}; %获取当前人的当前语音信号
          %预处理
          %预加重
          pre_emp = filter([1 -0.97],1,speech); %预加重处理
          %汉明窗
          win_type= 'M'; %设置窗函数类型为汉明窗
          %倒谱系数
          Nmfcc   = 20; %设置MFCC特征中的倒谱系数个数为20
          %帧长
          Lframe  = fs*0.02; %设置帧长为20ms
          %滤波器组个数
          Nfilter = 20; %设置滤波器组的个数为20
          %帧移
          Offset_frame = fs*0.01; %设置帧移为10ms
          %mfcc特征
          Fmfcc        = melcepst(pre_emp,fs,win_type,Nmfcc,Nfilter,Lframe,Offset_frame); 
          Fmfcc2       = Fmfcc(:,1:end-1)';%去掉每帧的能量值,只保留MFCC系数
          idx2         = idx1+size(Fmfcc2,2);%计算MFCC特征矩阵的列下标上界
          cof(:,idx1:idx2-1) = Fmfcc2;%将MFCC特征存储到特征矩阵中
          idx1               = idx2;%更新MFCC特征矩阵的列下标下界
      end

  %GMM训练
  K_iter =30;  %Kmeans迭代次数
  EM_iter=30; %EM迭代次数
  %GMM的初始化
  [mix,Kerr]          = gmm_init(nums,cof',K_iter,'full');  %使用Kmeans算法对GMM的参数进行初始化 
  [mix,post,errlog]   = gmm_em(mix,cof',EM_iter); %使用EM算法对GMM模型的参数进行估计
  %将训练得到的GMM模型的参数存储到Gmm_model变量中
  Gmm_model{ij}.pai   = mix.priors;
  Gmm_model{ij}.mu    = mix.centres;
  Gmm_model{ij}.sigma = mix.covars;
  clear cof mix;
end
%绘制Kmeans迭代的收敛过程
figure;
plot(Kerr,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
title('kmeans迭代收敛过程');
%绘制EM迭代的收敛过程
figure;
plot(errlog,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
title('EM迭代收敛过程');
相关文章
|
5天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
133 85
|
4天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
5天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
3天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。