Python和网络摄像头也有关系?

简介: Python和网络摄像头也有关系?

阅读本教程之前请阅读Python中的人脸识别这篇文章。必要的条件

  1. 安装了OpenCV
  2. 一个正常工作的网络摄像头

实例代码:

让我们直接进入代码

    import cv2
    import sys
    cascPath = sys.argv[1]
    faceCascade = cv2.CascadeClassifier(cascPath)
    video_capture = cv2.VideoCapture(0)
    while True:
        # 获取一帧
        ret, frame = video_capture.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.1,
            minNeighbors=5,
            minSize=(30, 30),
            flags=cv2.cv.CV_HAAR_SCALE_IMAGE
        )
        # 在这些面周围画一个长方形
        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
        # 显示结果帧
        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    # 一切完成时,释放捕获
    video_capture.release()
    cv2.destroyAllWindows()

    现在把它分解为…


    import cv2
    import sys
    cascPath = sys.argv[1]
    faceCascade = cv2.CascadeClassifier(cascPath)

    创建一个面部级联,就像在图像示例中所做的那样。

    video_capture=cv2.VideoCapture(0)

    这一行将视频源设置为默认的摄像头,OpenCV可以很容易地捕捉到。

    还可以在这里提供一个文件名,Python将读取视频文件。然而,你需要安装ffmpeg,因为OpenCV本身不能解码压缩视频。Ffmpeg充当OpenCV的前端,理想情况下,它应该直接编译成OpenCV。但是这并不容易做到,尤其是在Windows上。

    whileTrue:

       # Capture frame-by-frame

       ret,frame=video_capture.read()

    我们开始捕捉视频。这个read()函数从视频源读取一个帧,在本例中是网络摄像头。返回俩个值:

    1. 实际的视频帧读(每个循环中有一个帧)
    2. 返回码

    返回代码告诉我们是否已经用完了帧,如果我们从文件中读取,则会发生这种情况。当阅读从网络摄像头,因为我们可以永远记录,所以我们会忽略它。

        # 获取一帧
          ret, frame = video_capture.read()
          gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
          faces = faceCascade.detectMultiScale(
              gray,
              scaleFactor=1.1,
              minNeighbors=5,
              minSize=(30, 30),
              flags=cv2.cv.CV_HAAR_SCALE_IMAGE
          )
      # 在这些面周围画一个长方形
      for (x, y, w, h) in faces:
      cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
          # 显示结果帧
          cv2.imshow('Video', frame)

      这段代码应该很熟悉。需要我们捕捉到的画面中寻找那张脸。

      ifcv2.waitKey(1)&0xFF==ord('q'):

         break

      ‘Q’键被按下,退出脚本。

      # 当一切完成时,释放捕获

      video_capture.release()

      cv2.destroyAllWindows()

      目录
      打赏
      0
      0
      0
      0
      4
      分享
      相关文章
      猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
      宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
      696 55
      基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
      眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
      399 5
      基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
      |
      2月前
      |
      探索Python高级并发与网络编程技术。
      可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
      67 15
      Python 原生爬虫教程:网络爬虫的基本概念和认知
      网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
      305 31
      基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
      在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
      100 7
      利用Python获取网络数据的技巧
      抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
      89 14
      |
      8月前
      |
      Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
      【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
      339 2
      基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
      害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
      292 1
      基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
      如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
      本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
      196 5
      基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
      蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
      333 11
      基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

      推荐镜像

      更多
      AI助理

      你好,我是AI助理

      可以解答问题、推荐解决方案等

      登录插画

      登录以查看您的控制台资源

      管理云资源
      状态一览
      快捷访问