八大排序算法使用Python实现(干货)

简介: 八大排序算法使用Python实现(干货)

读完需要 17 分钟

一、冒泡排序

冒泡排序算法的运作如下:

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

以上节选自维基百科

代码实现:

def bubble_sort(numberlist):
    length = len(numberlist)
    for i in range(length):
        for j in range(1, length - i):
            if numberlist[j - 1] > numberlist[j]:
                numberlist[j], numberlist[j - 1] = numberlist[j - 1], numberlist[j]
    return numberlist

Python基础文章:走起

二、选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

以上节选自维基百科

代码实现:

def findSmallest(arr):  # 用于查找出数组中最小的元素,返回最小元素的索引。
    smallest = arr[0]
    smallest_index = 0
    for i in range(1, len(arr)):
        if smallest > arr[i]:
            smallest = arr[i]
            smallest_index = i
    return smallest_index
def selectSort(arr):
    newArr = []
    while arr:
        smallest = findSmallest(arr)
        newArr.append(arr.pop(smallest))
    return newArr

Python之从列表推导到zip()函数的五种技巧走起

三、插入排序

步骤如下

从第一个元素开始,该元素可以认为已经被排序

取出下一个元素,在已经排序的元素序列中从后向前扫描

如果该元素(已排序)大于新元素,将该元素移到下一位置

重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

将新元素插入到该位置后

重复步骤2~5

以上节选自维基百科

代码实现

def insert_sort(data):
    for k in range(1, len(data)):
        cur = data[k]
        j = k
        while j > 0 and data[j - 1] > cur:
            data[j] = data[j - 1]
            j -= 1
        data[j] = cur
    return data

使用Python优美的下载音乐:走起

四、希尔排序

希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。这样可以让一个元素可以一次性地朝最终位置前进一大步。然后算法再取越来越小的步长进行排序,算法的最后一步就是普通的插入排序,但是到了这步,需排序的数据几乎是已排好的了(此时插入排序较快)。

以上节选自维基百科

代码实现:

def shell_sort(numberlist):
    length = len(numberlist)
    gap = length // 2
    while gap > 0:
        for i in range(gap, length):
            temp = numberlist[i]
            j = i
            while j >= gap and numberlist[j - gap] > temp:
                numberlist[j] = numberlist[j - gap]
                j -= gap
            numberlist[j] = temp
        gap = gap // 2
    return numberlist

五、归并排序

原理如下(假设序列共有{displaystyle n}个元素):

将序列每相邻两个数字进行归并操作,形成{displaystyle ceil(n/2)}个序列,排序后每个序列包含两/一个元素

若此时序列数不是1个则将上述序列再次归并,形成{displaystyle ceil(n/4)}个序列,每个序列包含四/三个元素

重复步骤2,直到所有元素排序完毕,即序列数为1

以上节选自维基百科

代码如下:

def  merge(left, right):
    result = []
    while left and right:
        if left[0] < right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0))
    if left:
        result += left
    if right:
        result += right
    return result
def merge_sort(numberlist):
    if len(numberlist) <= 1:
        return numberlist
    mid = len(numberlist) // 2
    left = numberlist[:mid]
    right = numberlist[mid:]
    left = merge_sort(left)
    right = merge_sort(right)
    return merge(left, right)

六、快速排序

从数列中挑出一个元素,称为“基准”(pivot),

重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作。

递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

以上节选自维基百科

代码如下:

def quick_sort(array):
        if len(array) < 2:
            return array
        else:
            pivot = array[0]
            less = [i for i in array[1:] if i <= pivot]
            greater = [i for i in array[1:] if i > pivot]
            return quick_sort(less) + [pivot] + quick_sort(greater)

七、堆排序

若以升序排序说明,把数组转换成最大堆积(Max-Heap Heap),这是一种满足最大堆积性质(Max-Heap Property)的二叉树:对于除了根之外的每个节点i, A[parent(i)] ≥ A[i]。

重复从最大堆积取出数值最大的结点(把根结点和最后一个结点交换,把交换后的最后一个结点移出堆),并让残余的堆积维持最大堆积性质。

def heap_sort(numberlist):
    length = len(numberlist)
    def sift_down(start, end):
        root = start
        while True:
            child = 2 * root + 1
            if child > end:
                break
            if child + 1 <= end and numberlist[child] < numberlist[child + 1]:
                child += 1
            if numberlist[root] < numberlist[child]:
                numberlist[root], numberlist[child] = numberlist[child], numberlist[root]
                root = child
            else:
                break
# 创建最大堆
    for start in range((length - 2) // 2, -1, -1):
        sift_down(start, length - 1)
# 堆排序
    for end in range(length - 1, 0, -1):
        numberlist[0], numberlist[end] = numberlist[end], numberlist[0]
        sift_down(0, end - 1)
    return numberlist

八、计数排序

以上节选自维基百科

代码如下:

def counting_sort(numberlist, maxnumber):  # maxnumber为数组中的最大值
    length = len(numberlist)  # 待排序数组长度
    b = [0 for i in range(length)] # 设置输出序列,初始化为0
    c = [0 for i in range(maxnumber+ 1)]  # 设置技术序列,初始化为0
    for j in numberlist:
        c[j] = c[j] + 1
    for i in range(1, len(c)):
        c[i] = c[i] + c[i - 1]
    for j in numberlist:
        b[c[j] - 1] = j
        c[j] = c[j] - 1
    return b

本文章参考链接:https://segmentfault.com/a/1190000019623686



岁月有你  惜惜相处

相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
18 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
24天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
241 55
|
13天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
105 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
146 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
132 61
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
123 63
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
168 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
9天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
14天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
46 5
|
14天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
51 0
下一篇
开通oss服务