Elasticsearch分布式模式下读写流程 2

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: Elasticsearch分布式模式下读写流程

动态更新索引

如何在保留不变性的前提下实现倒排索引的更新?

答案是: 用更多的索引。通过增加新的补充索引来反映新近的修改,而不是直接重写整个倒排索引。每一个倒排索引都会被轮流查询到,从最早的开始查询完后再对结果进行合并。


Elasticsearch 基于 Lucene, 这个 java 库引入了按段搜索的概念。 每一 段 本身都是一个倒排索引, 但索引在 Lucene 中除表示所有段的集合外, 还增加了提交点的概念 — 一个列出了所有已知段的文件


e8ff8513b89447298c1b681b97f8d544.png

按段搜索会以如下流程执行:

1、新文档被收集到内存索引缓存

2、不时地, 缓存被提交

(1) 一个新的段“一个追加的倒排索引”被写入磁盘。
(2) 一个新的包含新段名字的 提交点 被写入磁盘
(3) 磁盘进行 同步 — 所有在文件系统缓存中等待的写入都刷新到磁盘,以确保它们被写入物理文件

3、新的段被开启,让它包含的文档可见以被搜索

4、内存缓存被清空,等待接收新的文档

当一个查询被触发,所有已知的段按顺序被查询。词项统计会对所有段的结果进行聚合,以保证每个词和每个文档的关联都被准确计算。 这种方式可以用相对较低的成本将新文档添加到索引


段是不可改变的,所以既不能从把文档从旧的段中移除,也不能修改旧的段来进行反映文档的更新。 取而代之的是,每个提交点会包含一个 .del 文件,文件中会列出这些被删除文档的段信息。


当一个文档被 “删除” 时,它实际上只是在 .del 文件中被 标记 删除。一个被标记删除的文档仍然可以被查询匹配到, 但它会在最终结果被返回前从结果集中移除。


文档更新也是类似的操作方式:当一个文档被更新时,旧版本文档被标记删除,文档的新版本被索引到一个新的段中。 可能两个版本的文档都会被一个查询匹配到,但被删除的那个旧版本文档在结果集返回前就已经被移除。


近实时搜索

随着按段(per-segment)搜索的发展,一个新的文档从索引到可被搜索的延迟显著降低了。新文档在几分钟之内即可被检索,但这样还是不够快。磁盘在这里成为了瓶颈。提交(Commiting)一个新的段到磁盘需要一个 fsync 来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据。 但是 fsync 操作代价很大; 如果每次索引一个文档都去执行一次的话会造成很大的性能问题。


我们需要的是一个更轻量的方式来使一个文档可被搜索,这意味着 fsync 要从整个过程中被移除。在 Elasticsearch 和磁盘之间是文件系统缓存。 像之前描述的一样, 在内存索引缓冲区中的文档会被写入到一个新的段中。 但是这里新段会被先写入到文件系统缓存—这一步代价会比较低,稍后再被刷新到磁盘—这一步代价比较高。不过只要文件已经在缓存中,就可以像其它文件一样被打开和读取了。

Lucene 允许新段被写入和打开—使其包含的文档在未进行一次完整提交时便对搜索可见。

这种方式比进行一次提交代价要小得多,并且在不影响性能的前提下可以被频繁地执行

在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh 。 默认情况下每个分片会每秒自动刷新一次。这就是为什么我们说 Elasticsearch 是 近 实时搜索: 文档的变化并不是立即对搜索可见,但会在一秒之内变为可见。


这些行为可能会对新用户造成困惑: 他们索引了一个文档然后尝试搜索它,但却没有搜到。这个问题的解决办法是用 refresh API 执行一次手动刷新: /users/_refresh


尽管刷新是比提交轻量很多的操作,它还是会有性能开销。当写测试的时候, 手动刷新很有用,但是不要在生产环境下每次索引一个文档都去手动刷新。 相反,你的应用需要意识到 Elasticsearch 的近实时的性质,并接受它的不足。


并不是所有的情况都需要每秒刷新。可能你正在使用 Elasticsearch 索引大量的日志文件,你可能想优化索引速度而不是近实时搜索, 可以通过设置 refresh_interval , 降低每个索引的刷新频率

{
   "settings": {
   "refresh_interval": "30s" 
   } 
 }

refresh_interval 可以在既存索引上进行动态更新。 在生产环境中,当你正在建立一个大的新索引时,可以先关闭自动刷新,待开始使用该索引时,再把它们调回来

# 关闭自动刷新
PUT /users/_settings
{ "refresh_interval": -1 } 
# 每一秒刷新
PUT /users/_settings
{ "refresh_interval": "1s" }

持久化变更

如果没有用 fsync 把数据从文件系统缓存刷(flush)到硬盘,我们不能保证数据在断电甚至是程序正常退出之后依然存在。为了保证 Elasticsearch 的可靠性,需要确保数据变化被持久化到磁盘。在动态更新索引,我们说一次完整的提交会将段刷到磁盘,并写入一个包含所有段列表的提交点。Elasticsearch 在启动或重新打开一个索引的过程中使用这个提交点来判断哪些段隶属于当前分片。


即使通过每秒刷新(refresh)实现了近实时搜索,我们仍然需要经常进行完整提交来确保能从失败中恢复。但在两次提交之间发生变化的文档怎么办?我们也不希望丢失掉这些数据。Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时均进行了日志记录


整个流程如下:


1、一个文档被索引之后,就会被添加到内存缓冲区,并且追加到了 translog


3a6efe3909f5448eb314b69ce3452a09.png

2、刷新(refresh)使分片每秒被刷新(refresh)一次

  • 这些在内存缓冲区的文档被写入到一个新的段中,且没有进行 fsync 操作。
  • 这个段被打开,使其可被搜索
  • 内存缓冲区被清空

3、这个进程继续工作,更多的文档被添加到内存缓冲区和追加到事务日志

4、每隔一段时间—例如 translog 变得越来越大—索引被刷新(flush);一个新的 translog 被创建,并且一个全量提交被执行

所有在内存缓冲区的文档都被写入一个新的段。

缓冲区被清空。

一个提交点被写入硬盘

文件系统缓存通过 fsync 被刷新(flush)

老的 translog 被删除。

translog 提供所有还没有被刷到磁盘的操作的一个持久化纪录。当 Elasticsearch 启动的时候, 它会从磁盘中使用最后一个提交点去恢复已知的段,并且会重放 translog 中所有在最后一次提交后发生的变更操作。


translog 也被用来提供实时 CRUD 。当你试着通过 ID 查询、更新、删除一个文档,它会在尝试从相应的段中检索之前, 首先检查 translog 任何最近的变更。这意味着它总是能够实时地获取到文档的最新版本。

5e177aadf8fe49a088c31fe772b122b7.png

执行一个提交并且截断 translog 的行为在 Elasticsearch 被称作一次 flush分片每 30 分钟被自动刷新(flush),或者在 translog 太大的时候也会刷新


你很少需要自己手动执行 flush 操作;通常情况下,自动刷新就足够了。这就是说,在重启节点或关闭索引之前执行 flush 有益于你的索引。当 Elasticsearch 尝试恢复或重新打开一个索引, 它需要重放 translog 中所有的操作,所以如果日志越短,恢复越快。


translog 的目的是保证操作不会丢失,在文件被 fsync 到磁盘前,被写入的文件在重启之后就会丢失。默认 translog 是每 5 秒被 fsync 刷新到硬盘, 或者在每次写请求完成之后执行(e.g. index, delete, update, bulk)。这个过程在主分片和复制分片都会发生。最终, 基本上,这意味着在整个请求被 fsync 到主分片和复制分片的 translog 之前,你的客户端不会得到一个 200 OK 响应。


在每次请求后都执行一个 fsync 会带来一些性能损失,尽管实践表明这种损失相对较小(特别是 bulk 导入,它在一次请求中平摊了大量文档的开销)。


但是对于一些大容量的偶尔丢失几秒数据问题也并不严重的集群,使用异步的 fsync 还是比较有益的。比如,写入的数据被缓存到内存中,再每 5 秒执行一次 fsync 。如果你决定使用异步 translog 的话,你需要 保证 在发生 crash 时,丢失掉 sync_interval 时间段的数据也无所谓。请在决定前知晓这个特性。如果你不确定这个行为的后果,最好是使用默认的参数( “index.translog.durability”: “request” )来避免数据丢失。

段合并

由于自动刷新流程每秒会创建一个新的段 ,这样会导致短时间内的段数量暴增。而段数目太多会带来较大的麻烦。 每一个段都会消耗文件句柄、内存和 cpu 运行周期。更重要的是,每个搜索请求都必须轮流检查每个段;所以段越多,搜索也就越慢。


Elasticsearch 通过在后台进行段合并来解决这个问题。小的段被合并到大的段,然后这些大的段再被合并到更大的段。


段合并的时候会将那些旧的已删除文档从文件系统中清除。被删除的文档(或被更新文档的旧版本)不会被拷贝到新的大段中。


启动段合并不需要你做任何事。进行索引和搜索时会自动进行。


1、当索引的时候,刷新(refresh)操作会创建新的段并将段打开以供搜索使用。

2、合并进程选择一小部分大小相似的段,并且在后台将它们合并到更大的段中。这并不会中断索引和搜索

fd728181c7e14e34a35b11cfec21155b.png

3、一旦合并结束,老的段被删除

  • 新的段被刷新(flush)到了磁盘。 ** 写入一个包含新段且排除旧的和较小的段的新提交点。
  • 新的段被打开用来搜索。
  • 老的段被删除


  • 合并大的段需要消耗大量的 I/O 和 CPU 资源,如果任其发展会影响搜索性能。Elasticsearch在默认情况下会对合并流程进行资源限制,所以搜索仍然 有足够的资源很好地执行

文档冲突

当我们使用 index API 更新文档 ,可以一次性读取原始文档,做我们的修改,然后重新索引 整个文档 。 最近的索引请求将获胜:无论最后哪一个文档被索引,都将被唯一存储在 Elasticsearch 中。如果其他人同时更改这个文档,他们的更改将丢失。


很多时候这是没有问题的。也许我们的主数据存储是一个关系型数据库,我们只是将数据复制到 Elasticsearch 中并使其可被搜索。 也许两个人同时更改相同的文档的几率很小。或者对于我们的业务来说偶尔丢失更改并不是很严重的问题。


但有时丢失了一个变更就是 非常严重的 。试想我们使用 Elasticsearch 存储我们网上商城商品库存的数量, 每次我们卖一个商品的时候,我们在 Elasticsearch 中将库存数量减少。有一天,管理层决定做一次促销。突然地,我们一秒要卖好几个商品。 假设有两个 web 程序并行运行,每一个都同时处理所有商品的销售

078ef10cc8be4a2eb8b19d0f94f7b401.png

web_1 对 stock_count 所做的更改已经丢失,因为 web_2 不知道它的 stock_count 的拷贝已经过期。 结果我们会认为有超过商品的实际数量的库存,因为卖给顾客的库存商品并不存在,我们将让他们非常失望。


变更越频繁,读数据和更新数据的间隙越长,也就越可能丢失变更。


在数据库领域中,有两种方法通常被用来确保并发更新时变更不会丢失:

悲观并发控制

这种方法被关系型数据库广泛使用,它假定有变更冲突可能发生,因此阻塞访问资源以防止冲突。 一个典型的例子是读取一行数据之前先将其锁住,确保只有放置锁的线程能够对这行数据进行修改。

乐观并发控制

Elasticsearch 中使用的这种方法假定冲突是不可能发生的,并且不会阻塞正在尝试的操作。 然而,如果源数据在读写当中被修改,更新将会失败。应用程序接下来将决定该如何解决冲突。 例如,可以重试更新、使用新的数据、或者将相关情况报告给用户。


乐观并发控制


Elasticsearch 是分布式的。当文档创建、更新或删除时, 新版本的文档必须复制到集群中的其他节点。Elasticsearch 也是异步和并发的,这意味着这些复制请求被并行发送,并且到达目的地时也许 顺序是乱的 。 Elasticsearch 需要一种方法确保文档的旧版本不会覆盖新的版本。


当我们之前讨论 index ,GET 和 delete 请求时,我们指出每个文档都有一个 _version (版本)号,当文档被修改时版本号递增。 Elasticsearch 使用这个 version 号来确保变更以正确顺序得到执行。如果旧版本的文档在新版本之后到达,它可以被简单的忽略。


我们可以利用 version 号来确保 应用中相互冲突的变更不会导致数据丢失。我们通过指定想要修改文档的 version 号来达到这个目的。 如果该版本不是当前版本号,我们的请求将会失败。


老的版本 es 使用 version,但是新版本不支持了,会报下面的错误,提示我们用 if_seq_no和 if_primary_term

{
    "error": {
        "root_cause": [
            {
                "type": "action_request_validation_exception",
                "reason": "Validation Failed: 1: internal versioning can not be used 
for optimistic concurrency control. Please use `if_seq_no` and `if_primary_term` 
instead;"
            }
        ],
        "type": "action_request_validation_exception",
        "reason": "Validation Failed: 1: internal versioning can not be used for 
optimistic concurrency control. Please use `if_seq_no` and `if_primary_term` 
instead;"
    },
    "status": 400
}

外部系统版本控制

一个常见的设置是使用其它数据库作为主要的数据存储,使用 Elasticsearch 做数据检索, 这意味着主数据库的所有更改发生时都需要被复制到 Elasticsearch ,如果多个进程负责这一数据同步,你可能遇到类似于之前描述的并发问题。


如果你的主数据库已经有了版本号 — 或一个能作为版本号的字段值比如 timestamp —那么你就可以在 Elasticsearch 中通过增加 version_type=external 到查询字符串的方式重用这些相同的版本号, 版本号必须是大于零的整数, 且小于 9.2E+18 — 一个 Java 中 long 类型的正值。


外部版本号的处理方式和我们之前讨论的内部版本号的处理方式有些不同,Elasticsearch 不是检查当前 _version 和请求中指定的版本号是否相同, 而是检查当前_version 是否 小于 指定的版本号。 如果请求成功,外部的版本号作为文档的新 _version 进行存储。

尚硅谷yyds

学习资料来自于:https://www.bilibili.com/video/BV1hh411D7sb?spm_id_from=333.337.search-card.all.click&vd_source=3d2bdeee500295285c08ee07dfad07ea


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 JSON 数据库
Elasticsearch 分布式架构解析
【9月更文第2天】Elasticsearch 是一个分布式的搜索和分析引擎,以其高可扩展性和实时性著称。它基于 Lucene 开发,但提供了更高级别的抽象,使得开发者能够轻松地构建复杂的搜索应用。本文将深入探讨 Elasticsearch 的分布式存储和检索机制,解释其背后的原理及其优势。
197 5
|
13天前
|
存储 索引
Elasticsearch分布式架构
【11月更文挑战第2天】
23 1
|
21天前
|
监控
Saga模式在分布式系统中保证事务的隔离性
Saga模式在分布式系统中保证事务的隔离性
|
1月前
|
SQL 分布式计算 大数据
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
55 2
|
2月前
|
自然语言处理 搜索推荐 数据库
高性能分布式搜索引擎Elasticsearch详解
高性能分布式搜索引擎Elasticsearch详解
85 4
高性能分布式搜索引擎Elasticsearch详解
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
63 4
|
1月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
37 1
|
1月前
|
存储 机器学习/深度学习 缓存
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
45 1
|
2月前
Saga模式在分布式系统中如何保证事务的隔离性
Saga模式在分布式系统中如何保证事务的隔离性
|
3月前
|
存储 分布式计算 算法
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
190 2
下一篇
无影云桌面