Flink之处理函数 (ProcessFunction)2

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink之处理函数 (ProcessFunction)

窗口处理函数

除 了 KeyedProcessFunction , 另 外 一 大 类 常 用 的 处 理 函 数 , 就 是 基 于 窗 口 的ProcessWindowFunction 和 ProcessAllWindowFunction 了。

窗口处理函数的使用

进行窗口计算,我们可以直接调用现成的简单聚合方法(sum/max/min),也可以通过调用.reduce()或.aggregate()来自定义一般的增量聚合函数(ReduceFunction/AggregateFucntion);而对于更加复杂、需要窗口信息和额外状态的一些场景,我们还可以直接使用全窗口函数、把数据全部收集保存在窗口内,等到触发窗口计算时再统一处理。窗口处理函数就是一种典型的全窗口函数。


窗 口 处 理 函 数 ProcessWindowFunction 的 使 用 与 其 他 窗 口 函 数 类 似 , 也 是 基 于WindowedStream 直接调用方法就可以,只不过这时调用的是.process()。

stream.keyBy( t -> t.f0 )
  .window( TumblingEventTimeWindows.of(Time.seconds(10)) )
  .process(new MyProcessWindowFunction())

ProcessWindowFunction 解析

ProcessWindowFunction 既是处理函数又是全窗口函数。从名字上也可以推测出,它的本质似乎更倾向于“窗口函数”一些。事实上它的用法也确实跟其他处理函数有很大不同。我们可以从源码中的定义看到这一点:

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window> extends AbstractRichFunction {
  ...
  public abstract void process(
  KEY key, Context context, Iterable<IN> elements, Collector<OUT> out) throws Exception;
  public void clear(Context context) throws Exception {}
  public abstract class Context implements java.io.Serializable {...}
}

ProcessWindowFunction 依然是一个继承了 AbstractRichFunction 的抽象类,它有四个类型参数:


IN:input,数据流中窗口任务的输入数据类型。

OUT:output,窗口任务进行计算之后的输出数据类型。

KEY:数据中键 key 的类型。

W:窗口的类型,是 Window 的子类型。一般情况下我们定义时间窗口,W就是 TimeWindow。

而内部定义的方法,跟我们之前熟悉的处理函数就有所区别了。因为全窗口函数不是逐个处理元素的,所以处理数据的方法在这里并不是.processElement(),而是改成了.process()。方法包含四个参数。


key:窗口做统计计算基于的键,也就是之前 keyBy 用来分区的字段。

context:当前窗口进行计算的上下文,它的类型就是 ProcessWindowFunction内部定义的抽象类 Context。

elements:窗口收集到用来计算的所有数据,这是一个可迭代的集合类型。

out:用来发送数据输出计算结果的收集器,类型为 Collector。

可以明显看出,这里的参数不再是一个输入数据,而是窗口中所有数据的集合。而上下文context 所包含的内容也跟其他处理函数有所差别:

public abstract class Context implements java.io.Serializable {
  public abstract W window();
  public abstract long currentProcessingTime();
  public abstract long currentWatermark();
  public abstract KeyedStateStore windowState();
  public abstract KeyedStateStore globalState();
  public abstract <X> void output(OutputTag<X> outputTag, X value);
}

除了可以通过.output()方法定义侧输出流不变外,其他部分都有所变化。这里不再持有TimerService 对象,只能通过 currentProcessingTime()和 currentWatermark()来获取当前时间,所以失去了设置定时器的功能;另外由于当前不是只处理一个数据,所以也不再提供.timestamp()方法。与此同时,也增加了一些获取其他信息的方法:比如可以通过.window()直接获取到当前的窗口对象,也可以通过.windowState()和.globalState()获取到当前自定义的窗口状态和全局状态。注意这里的“窗口状态”是自定义的,不包括窗口本身已经有的状态,针对当前 key、当前窗口有效;而“全局状态”同样是自定义的状态,针对当前 key 的所有窗口有效。


所以我们会发现,ProcessWindowFunction 中除了.process()方法外,并没有.onTimer()方法,而是多出了一个.clear()方法。从名字就可以看出,这主要是方便我们进行窗口的清理工作。如果我们自定义了窗口状态,那么必须在.clear()方法中进行显式地清除,避免内存溢出。


这里有一个问题:没有了定时器,那窗口处理函数就失去了一个最给力的武器,如果我们希望有一些定时操作又该怎么做呢?其实仔细思考会发现,对于窗口而言,它本身的定义就包含了一个触发计算的时间点,其实一般情况下是没有必要再去做定时操作的。如果非要这么干,Flink也提供了另外的途径——使用窗口触发器(Trigger)。在触发器中也有一个TriggerContext,它可以起到类似 TimerService 的作用:获取当前时间、注册和删除定时器,另外还可以获取当前的状态。这样设计无疑会让处理流程更加清晰——定时操作也是一种“触发”,所以我们就让所有的触发操作归触发器管,而所有处理数据的操作则归窗口函数管。


至于另一种窗口处理函数 ProcessAllWindowFunction,它的用法非常类似。区别在于它基于的是 AllWindowedStream,相当于对没有 keyBy 的数据流直接开窗并调用.process()方法:

stream.windowAll( TumblingEventTimeWindows.of(Time.seconds(10)) )
  .process(new MyProcessAllWindowFunction())

应用案例——Top N

窗口的计算处理,在实际应用中非常常见。对于一些比较复杂的需求,如果增量聚合函数无法满足,我们就需要考虑使用窗口处理函数这样的“大招”了。


网站中一个非常经典的例子,就是实时统计一段时间内的热门 url。例如,需要统计最近10 秒钟内最热门的两个 url 链接,并且每 5 秒钟更新一次。我们知道,这可以用一个滑动窗口来实现,而“热门度”一般可以直接用访问量来表示。于是就需要开滑动窗口收集 url 的访问数据,按照不同的 url 进行统计,而后汇总排序并最终输出前两名。这其实就是著名的“Top N”问题。


很显然,简单的增量聚合可以得到 url 链接的访问量,但是后续的排序输出 Top N 就很难实现了。所以接下来我们用窗口处理函数进行实现。


使用 ProcessAllWindowFunction

一种最简单的想法是,我们干脆不区分 url 链接,而是将所有访问数据都收集起来,统一进行统计计算。所以可以不做 keyBy,直接基于 DataStream 开窗,然后使用全窗口函数ProcessAllWindowFunction 来进行处理。


在窗口中可以用一个 HashMap 来保存每个 url 的访问次数,只要遍历窗口中的所有数据,自然就能得到所有 url 的热门度。最后把 HashMap 转成一个列表 ArrayList,然后进行排序、取出前两名输出就可以了。

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessAllWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.HashMap;
public class ProcessAllWindowTopN {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<Event> eventStream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long
                                    recordTimestamp) {
                                return element.timestamp;
                            }
                        })
                );
        // 只需要 url 就可以统计数量,所以转换成 String 直接开窗统计
        SingleOutputStreamOperator<String> result = eventStream
                .map(new MapFunction<Event, String>() {
                    @Override
                    public String map(Event value) throws Exception {
                        return value.url;
                    }
                })
                .windowAll(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5))) // 开滑动窗口
                .process(new ProcessAllWindowFunction<String, String, TimeWindow>() {
                    @Override
                    public void process(Context context, Iterable<String> elements, Collector<String> out) throws Exception {
                        HashMap<String, Long> urlCountMap = new HashMap<>();
                        // 遍历窗口中数据,将浏览量保存到一个 HashMap 中
                        for (String url : elements) {
                            if (urlCountMap.containsKey(url)) {
                                long count = urlCountMap.get(url);
                                urlCountMap.put(url, count + 1L);
                            } else {
                                urlCountMap.put(url, 1L);
                            }
                        }
                        ArrayList<Tuple2<String, Long>> mapList = new ArrayList<Tuple2<String, Long>>();
                        // 将浏览量数据放入 ArrayList,进行排序
                        for (String key : urlCountMap.keySet()) {
                            mapList.add(Tuple2.of(key, urlCountMap.get(key)));
                        }
                        mapList.sort(new Comparator<Tuple2<String, Long>>() {
                            @Override
                            public int compare(Tuple2<String, Long> o1, Tuple2<String,
                                    Long> o2) {
                                return o2.f1.intValue() - o1.f1.intValue();
                            }
                        });
                        // 取排序后的前两名,构建输出结果
                        StringBuilder result = new StringBuilder();
                        result.append("========================================\n");
                        for (int i = 0; i < 2; i++) {
                            Tuple2<String, Long> temp = mapList.get(i);
                            String info = "浏览量 No." + (i + 1) +
                                    " url:" + temp.f0 +
                                    " 浏览量:" + temp.f1 +
                                    " 窗 口 结 束 时 间 : " + new
                                    Timestamp(context.window().getEnd()) + "\n";
                            result.append(info);
                        }
                        result.append("========================================\n");
                        out.collect(result.toString());
                    }
                });
        result.print();
        env.execute();
    }
}

运行结果如下所示:

========================================
浏览量 No.1 url:./prod?id=1 浏览量:2 窗口结束时间:2021-07-01 15:24:25.0
浏览量 No.2 url:./cart 浏览量:1 窗口结束时间:2021-07-01 15:24:25.0
========================================

使用 KeyedProcessFunction

在上一小节的实现过程中,我们没有进行按键分区,直接将所有数据放在一个分区上进行了开窗操作。这相当于将并行度强行设置为 1,在实际应用中是要尽量避免的,所以 Flink 官方也并不推荐使用 AllWindowedStream 进行处理。另外,我们在全窗口函数中定义了 HashMap

来统计 url 链接的浏览量,计算过程是要先收集齐所有数据、然后再逐一遍历更新 HashMap,这显然不够高效。如果我们可以利用增量聚合函数的特性,每来一条数据就更新一次对应 url的浏览量,那么到窗口触发计算时只需要做排序输出就可以了。


基于这样的想法,我们可以从两个方面去做优化:一是对数据进行按键分区,分别统计浏览量;二是进行增量聚合,得到结果最后再做排序输出。所以,我们可以使用增量聚合函数AggregateFunction 进行浏览量的统计,然后结合 ProcessWindowFunction 排序输出来实现 Top N的需求。


具体实现思路就是,先按照 url 对数据进行 keyBy 分区,然后开窗进行增量聚合。这里就会发现一个问题:我们进行按键分区之后,窗口的计算就会只针对当前 key 有效了;也就是说,每个窗口的统计结果中,只会有一个 url 的浏览量,这是无法直接用 ProcessWindowFunction进行排序的。所以我们只能分成两步:先对每个 url 链接统计出浏览量,然后再将统计结果收集起来,排序输出最终结果。因为最后的排序还是基于每个时间窗口的,所以为了让输出的统计结果中包含窗口信息,我们可以借用第六章中定义的 POJO 类 UrlViewCount 来表示,它包含了 url、浏览量(count)以及窗口的起始结束时间。之后对 UrlViewCount 的处理,可以先按窗口分区,然后用 KeyedProcessFunction 来实现。


总结处理流程如下:


  1. 读取数据源;
  2. 筛选浏览行为(pv);
  3. 提取时间戳并生成水位线;
  4. 按照 url 进行 keyBy 分区操作;
  5. 开长度为 1 小时、步长为 5 分钟的事件时间滑动窗口;
  6. 使用增量聚合函数 AggregateFunction,并结合全窗口函数 WindowFunction 进行窗口聚合,得到每个 url、在每个统计窗口内的浏览量,包装成 UrlViewCount;
  7. 按照窗口进行 keyBy 分区操作;
  8. 对同一窗口的统计结果数据,使用 KeyedProcessFunction 进行收集并排序输出。

糟糕的是,这里又会带来另一个问题。最后我们用 KeyedProcessFunction 来收集数据做排序,这时面对的就是窗口聚合之后的数据流,而窗口已经不存在了;那到底什么时候会收集齐所有数据呢?这问题听起来似乎有些没道理。我们统计浏览量的窗口已经关闭,就说明了当前已经到了要输出结果的时候,直接输出不就行了吗?


没有这么简单。因为数据流中的元素是逐个到来的,所以即使理论上我们应该“同时”收到很多 url 的浏览量统计结果,实际也是有先后的、只能一条一条处理。下游任务(就是我们定义的 KeyedProcessFunction)看到一个 url 的统计结果,并不能保证这个时间段的统计数据不会再来了,所以也不能贸然进行排序输出。解决的办法,自然就是要等所有数据到齐了——这很容易让我们联想起水位线设置延迟时间的方法。这里我们也可以“多等一会儿”,等到水位线真正超过了窗口结束时间,要统计的数据就肯定到齐了。


具体实现上,可以采用一个延迟触发的事件时间定时器。基于窗口的结束时间来设定延迟,其实并不需要等太久——因为我们是靠水位线的推进来触发定时器,而水位线的含义就是“之前的数据都到齐了”。所以我们只需要设置 1 毫秒的延迟,就一定可以保证这一点。


而在等待过程中,之前已经到达的数据应该缓存起来,我们这里用一个自定义的“列表状态”(ListState)来进行存储,如图所示。这个状态需要使用富函数类的 getRuntimeContext()方法获取运行时上下文来定义,我们一般把它放在 open()生命周期方法中。之后每来一个UrlViewCount,就把它添加到当前的列表状态中,并注册一个触发时间为窗口结束时间加 1毫秒(windowEnd + 1)的定时器。待到水位线到达这个时间,定时器触发,我们可以保证当前窗口所有 url 的统计结果 UrlViewCount 都到齐了;于是从状态中取出进行排序输出。

f40e74764b5a482ca549658527668c72.png

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
public class KeyedProcessTopN {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        // 从自定义数据源读取数据
        SingleOutputStreamOperator<Event> eventStream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long
                                    recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        // 需要按照 url 分组,求出每个 url 的访问量
        SingleOutputStreamOperator<UrlViewCount> urlCountStream = eventStream.keyBy(data -> data.url)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                .aggregate(new UrlViewCountAgg(), new UrlViewCountResult());
        // 对结果中同一个窗口的统计数据,进行排序处理
        SingleOutputStreamOperator<String> result = urlCountStream.keyBy(data -> data.windowEnd)
                .process(new TopN(2));
        result.print("result");
        env.execute();
    }
    // 自定义增量聚合
    public static class UrlViewCountAgg implements AggregateFunction<Event, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }
        @Override
        public Long add(Event value, Long accumulator) {
            return accumulator + 1;
        }
        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }
        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }
    // 自定义全窗口函数,只需要包装窗口信息
    public static class UrlViewCountResult extends ProcessWindowFunction<Long, UrlViewCount, String, TimeWindow> {
        @Override
        public void process(String url, Context context, Iterable<Long> elements, Collector<UrlViewCount> out) throws Exception {
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            out.collect(new UrlViewCount(url, elements.iterator().next(), start, end));
        }
    }
    // 自定义处理函数,排序取 top n
    public static class TopN extends KeyedProcessFunction<Long, UrlViewCount, String> {
        // 将 n 作为属性
        private Integer n;
        // 定义一个列表状态
        private ListState<UrlViewCount> urlViewCountListState;
        public TopN(Integer n) {
            this.n = n;
        }
        @Override
        public void open(Configuration parameters) throws Exception {
            // 从环境中获取列表状态句柄
            urlViewCountListState = getRuntimeContext().getListState(
                    new ListStateDescriptor<UrlViewCount>("url-view-count-list", Types.POJO(UrlViewCount.class)));
        }
        @Override
        public void processElement(UrlViewCount value, Context ctx, Collector<String> out) throws Exception {
            // 将 count 数据添加到列表状态中,保存起来
            urlViewCountListState.add(value);
            // 注册 window end + 1ms 后的定时器,等待所有数据到齐开始排序
            ctx.timerService().registerEventTimeTimer(ctx.getCurrentKey() + 1);
        }
        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
            // 将数据从列表状态变量中取出,放入 ArrayList,方便排序
            ArrayList<UrlViewCount> urlViewCountArrayList = new ArrayList<>();
            for (UrlViewCount urlViewCount : urlViewCountListState.get()) {
                urlViewCountArrayList.add(urlViewCount);
            }
            // 清空状态,释放资源
            urlViewCountListState.clear();
            // 排序
            urlViewCountArrayList.sort(new Comparator<UrlViewCount>() {
                @Override
                public int compare(UrlViewCount o1, UrlViewCount o2) {
                    return o2.count.intValue() - o1.count.intValue();
                }
            });
            // 取前两名,构建输出结果
            StringBuilder result = new StringBuilder();
            result.append("========================================\n");
            result.append("窗口结束时间:" + new Timestamp(timestamp - 1) + "\n");
            for (int i = 0; i < this.n; i++) {
                UrlViewCount UrlViewCount = urlViewCountArrayList.get(i);
                String info = "No." + (i + 1) + " "
                        + "url:" + UrlViewCount.url + " "
                        + "浏览量:" + UrlViewCount.count + "\n";
                result.append(info);
            }
            result.append("========================================\n");
            out.collect(result.toString());
        }
    }
}

代码中,我们还利用了定时器的特性:针对同一 key、同一时间戳会进行去重。所以对于同一个窗口而言,我们接到统计结果数据后设定的 windowEnd + 1 的定时器都是一样的,最终只会触发一次计算。而对于不同的 key(这里 key 是 windowEnd),定时器和状态都是独立的,所以我们也不用担心不同窗口间数据的干扰。


我们在上面的代码中使用了后面要讲解的 ListState。这里可以先简单说明一下。我们先声明一个列表状态变量:

private ListState<Event> UrlViewCountListState;

然后在 open 方法中初始化了列表状态变量,我们初始化的时候使用了 ListStateDescriptor描述符,这个描述符用来告诉 Flink 列表状态变量的名字和类型。列表状态变量是单例,也就是说只会被实例化一次。这个列表状态变量的作用域是当前 key 所对应的逻辑分区。我们使用add 方法向列表状态变量中添加数据,使用 get 方法读取列表状态变量中的所有元素。

侧输出流(Side Output)

处理函数还有另外一个特有功能,就是将自定义的数据放入“侧输出流”(side output)输出。这个概念我们并不陌生,之前在讲到窗口处理迟到数据时,最后一招就是输出到侧输出流。而这种处理方式的本质,其实就是处理函数的侧输出流功能。


我们之前讲到的绝大多数转换算子,输出的都是单一流,流里的数据类型只能有一种。而侧输出流可以认为是“主流”上分叉出的“支流”,所以可以由一条流产生出多条流,而且这些流中的数据类型还可以不一样。利用这个功能可以很容易地实现“分流”操作。


具体应用时,只要在处理函数的.processElement()或者.onTimer()方法中,调用上下文的.output()方法就可以了。

DataStream<Integer> stream = env.addSource(...);
SingleOutputStreamOperator<Long> longStream = stream.process(new ProcessFunction<Integer, Long>() {
  @Override
  public void processElement( Integer value, Context ctx, Collector<Integer> 
  out) throws Exception {
  // 转换成 Long,输出到主流中
  out.collect(Long.valueOf(value));
  // 转换成 String,输出到侧输出流中
  ctx.output(outputTag, "side-output: " + String.valueOf(value));
  }
});

这里 output()方法需要传入两个参数,第一个是一个“输出标签”OutputTag,用来标识侧输出流,一般会在外部统一声明;第二个就是要输出的数据。

我们可以在外部先将 OutputTag 声明出来:

OutputTag<String> outputTag = new OutputTag<String>("side-output") {};

如果想要获取这个侧输出流,可以基于处理之后的 DataStream 直接调用.getSideOutput()方法,传入对应的 OutputTag,这个方式与窗口 API 中获取侧输出流是完全一样的。

DataStream<String> stringStream = longStream.getSideOutput(outputTag);

尚硅谷yyds

学习资料来自于尚硅谷:https://www.bilibili.com/video/BV133411s7Sa?p=1

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
36 0
|
3月前
|
Java 关系型数据库 MySQL
实时计算 Flink版操作报错合集之在使用批处理模式中使用flat_aggregate函数时报错,该如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL Java 数据处理
实时计算 Flink版产品使用问题之开窗函数(WindowFunction)如何做开窗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
存储 流计算
|
5月前
|
传感器 流计算
|
5月前
|
消息中间件 SQL 分布式计算
|
6月前
|
SQL JSON 监控
实时计算 Flink版产品使用合集之直接将 JSON 字符串解析为数组的内置函数如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL Oracle 关系型数据库
Flink的表值函数
【2月更文挑战第18天】Flink的表值函数
56 3
|
6月前
|
SQL Oracle 关系型数据库
Flink的表值函数(Table-Valued Function,TVF)是一种返回值是一张表的函数
【2月更文挑战第17天】Flink的表值函数(Table-Valued Function,TVF)是一种返回值是一张表的函数
130 1
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
下一篇
无影云桌面