【数据结构】二叉树 链式结构的相关问题

简介: 【数据结构】二叉树 链式结构的相关问题

1.前置说明

在学习链式二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;
//创造树节点
BTNode* BuyNode(BTDataType x)
{
  BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    return NULL;
  } 
  newnode->data = x;
  newnode->left = newnode->right = NULL;
  return newnode;
}
// 构建二叉树
BTNode* CreatBinaryTree()
{
  BTNode* node1 = BuyNode(1);
  BTNode* node2 = BuyNode(2);
  BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
  node1->Left = node2;
  node1->Right = node4;
  node2->Left = node3;
  node4->Right = node5;
  node4->Left = node6;
  return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后面详解重点讲解。

再看二叉树基本操作前,再回顾下二叉树的概念二叉树是:

  1. 空树
  2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

创建的二叉树图解:


从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

2.二叉树的遍历

2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 


按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:


  1. 前序遍历(Preorder Traversal亦称先序遍历)――访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);


三个函数实现起来非常相似,只是访问数据的顺序不同。

具体实现:

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
  if (root==NULL)
  {
    printf("# ");
    return;
  }
  printf("%c ",root->data);
  BinaryTreePrevOrder(root->left);
  BinaryTreePrevOrder(root->right);
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("#");
    return;
  }
  BinaryTreePrevOrder(root->left);
  printf("%c ", root->data);
  BinaryTreePrevOrder(root->right);
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("#");
    return;
  }
  BinaryTreePrevOrder(root->left);
  BinaryTreePrevOrder(root->right);
  printf("%c ", root->data);
}

下面主要分析前序递归遍历,中序与后序图解类似,大家可自己动手绘制。

前序遍历递归图解:

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 2 5 6 4 1

 

2.2 层次遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。


那么我们怎么实现呢?

这里需要使用队列,让根节点先入堆,再出队,出队时让左右子树入堆,空树不进队,按照这个方式可以实现二叉树的层次遍历。

具体实现:这里队列相关函数要自己实现,C++就方便多了,以后会讲。

// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
  //创建一个队列
  Queue q;
  //初始化队列
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    QueuePop(&q);
    printf("%c ", front->data);
    if (front->left)
    {
      QueuePush(&q, front->left);
    }
    if (front->right)
    {
      QueuePush(&q, front->right);
    }
  }
  printf("\n");
  QueueDestroy(&q);
}


3.节点个数相关函数实现

3.1 二叉树节点个数

=左子树的节点数+右子树的节点数+根节点数。根节点数为1。

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}


3.2 二叉树叶子节点个数

=左子树的叶子节点数+右子树的叶子节点数。

// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  if (root->right == NULL && root->left == NULL)
  {
    return 1;
  }
  return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

3.3 二叉树第k层节点个数

=左子树的K-1层节点数+右子树的K-1层节点数。

// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
  assert(k > 0);
  if (root == NULL)
  {
    return 0;
  }
  if (k == 1)
  {
    return 1;
  }
  return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

3.4 在二叉树中查找值为x的节点

=根节点不是,就在左子树和右子树中寻找

//在二叉树中查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
  if (root == NULL)
  {
    return NULL;
  }
  if (root->data == x)
  {
    return root;
  }
  BTNode* left = BinaryTreeFind(root->left, x);
  BTNode* right = BinaryTreeFind(root->right, x);
  return left == NULL ? right : left;
}

4.二叉树基础oj练习

  1. 单值二叉树。OJ链接
  2. 检查两颗树是否相同。OJ链接
  3. 对称二叉树。OJ链接
  4. 二叉树的前序遍历。OJ链接
  5. 二叉树中序遍历。OJ链接
  6. 二叉树的后序遍历。OJ链接
  7. 另一颗树的子树。OJ链接


5.二叉树的创建和销毁

二叉树的构建及遍历。OJ链接

5.1 通过前序遍历构建二叉树

通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树,'#'代表空。

代码实现:

//开辟树节点空间
BTNode* BuyNode(char x)
{
    BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    newnode->data = x;
    newnode->left = newnode->right = NULL;
    return newnode;
}
//构建树
BTNode* CreatTree(char* arr,int*i)
{
    if(arr[*i] =='#')
    {
        (*i)++;
        return NULL;
    }
    BTNode* node = BuyNode(arr[*i]);
    (*i)++;
    node->left = CreatTree(arr,i);
    node->right = CreatTree(arr,i);
    return node;
}
int main() 
{
    char arr[] = "ABD##E#H##CF##G##";
    int i = 0;
    //传递下标的地址,这样就可以通过地址修改下标。
    BTNode* tree = CreatTree(arr, &i);
    return 0;
}

5.2 销毁二叉树

这里是后序思想,先释放左右子树,最后释放根节点。

// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
  if (*root == NULL)
  {
    return;
  }
  BinaryTreeDestory(&((*root)->left));
  BinaryTreeDestory(&((*root)->right)); 
  free(*root);
  *root = NULL;
}

5.3 判断二叉树是否为完全二叉树

这里也是通过队列进行判断,之前层次遍历空树不进队,而这里空树进队,当出队时遇到空时,停止出队,判断队列中是否有非空,如果有就不是完全二叉树

代码实现:

// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
  Queue q;
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    if (front != NULL)
    {
      QueuePop(&q);
      QueuePush(&q, front->left);
      QueuePush(&q, front->right);
    }
    else
    {
      //遇到空就跳出
      break;
    }
  }
  //检查后面节点有没有非空
  //有非空就不是完全二叉树
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    QueuePop(&q);
    if (front != NULL) 
      return 0;//不是
  }
  return 1;//是
}


本篇结束!

相关文章
|
27天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
42 13
【数据结构】二叉树全攻略,从实现到应用详解
|
24天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
24天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
24天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
2月前
|
存储
【初阶数据结构篇】二叉树基础概念
有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
|
2月前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
|
2月前
|
存储
【初阶数据结构篇】实现链式结构二叉树(二叉链)下篇
要改变root指针的指向,将本来指向根节点的root指针改为空,所以传二级指针(一级指针也可以,只不过在调用完记得把root置为空)。
|
2月前
|
存储 测试技术
【初阶数据结构篇】实现链式结构二叉树(二叉链)上篇
先构建根结点,再对左右子树构建,每次需要时申请一个结点空间即可,否则返回空指针。
|
2月前
|
存储 算法 测试技术
【初阶数据结构篇】实现顺序结构二叉树(堆的实现方法)
注意传过去的参数是插入的位置,即插入前的size,在调整完后再将size++
|
3天前
|
算法 安全 测试技术
golang 栈数据结构的实现和应用
本文详细介绍了“栈”这一数据结构的特点,并用Golang实现栈。栈是一种FILO(First In Last Out,即先进后出或后进先出)的数据结构。文章展示了如何用slice和链表来实现栈,并通过golang benchmark测试了二者的性能差异。此外,还提供了几个使用栈结构解决的实际算法问题示例,如有效的括号匹配等。
golang 栈数据结构的实现和应用