【数据结构】二叉树 链式结构的相关问题

简介: 【数据结构】二叉树 链式结构的相关问题

1.前置说明

在学习链式二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;
//创造树节点
BTNode* BuyNode(BTDataType x)
{
  BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    return NULL;
  } 
  newnode->data = x;
  newnode->left = newnode->right = NULL;
  return newnode;
}
// 构建二叉树
BTNode* CreatBinaryTree()
{
  BTNode* node1 = BuyNode(1);
  BTNode* node2 = BuyNode(2);
  BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
  node1->Left = node2;
  node1->Right = node4;
  node2->Left = node3;
  node4->Right = node5;
  node4->Left = node6;
  return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后面详解重点讲解。

再看二叉树基本操作前,再回顾下二叉树的概念二叉树是:

  1. 空树
  2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

创建的二叉树图解:


从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

2.二叉树的遍历

2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 


按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:


  1. 前序遍历(Preorder Traversal亦称先序遍历)――访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);


三个函数实现起来非常相似,只是访问数据的顺序不同。

具体实现:

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
  if (root==NULL)
  {
    printf("# ");
    return;
  }
  printf("%c ",root->data);
  BinaryTreePrevOrder(root->left);
  BinaryTreePrevOrder(root->right);
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("#");
    return;
  }
  BinaryTreePrevOrder(root->left);
  printf("%c ", root->data);
  BinaryTreePrevOrder(root->right);
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("#");
    return;
  }
  BinaryTreePrevOrder(root->left);
  BinaryTreePrevOrder(root->right);
  printf("%c ", root->data);
}

下面主要分析前序递归遍历,中序与后序图解类似,大家可自己动手绘制。

前序遍历递归图解:

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 2 5 6 4 1

 

2.2 层次遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。


那么我们怎么实现呢?

这里需要使用队列,让根节点先入堆,再出队,出队时让左右子树入堆,空树不进队,按照这个方式可以实现二叉树的层次遍历。

具体实现:这里队列相关函数要自己实现,C++就方便多了,以后会讲。

// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
  //创建一个队列
  Queue q;
  //初始化队列
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    QueuePop(&q);
    printf("%c ", front->data);
    if (front->left)
    {
      QueuePush(&q, front->left);
    }
    if (front->right)
    {
      QueuePush(&q, front->right);
    }
  }
  printf("\n");
  QueueDestroy(&q);
}


3.节点个数相关函数实现

3.1 二叉树节点个数

=左子树的节点数+右子树的节点数+根节点数。根节点数为1。

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}


3.2 二叉树叶子节点个数

=左子树的叶子节点数+右子树的叶子节点数。

// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  if (root->right == NULL && root->left == NULL)
  {
    return 1;
  }
  return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

3.3 二叉树第k层节点个数

=左子树的K-1层节点数+右子树的K-1层节点数。

// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
  assert(k > 0);
  if (root == NULL)
  {
    return 0;
  }
  if (k == 1)
  {
    return 1;
  }
  return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

3.4 在二叉树中查找值为x的节点

=根节点不是,就在左子树和右子树中寻找

//在二叉树中查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
  if (root == NULL)
  {
    return NULL;
  }
  if (root->data == x)
  {
    return root;
  }
  BTNode* left = BinaryTreeFind(root->left, x);
  BTNode* right = BinaryTreeFind(root->right, x);
  return left == NULL ? right : left;
}

4.二叉树基础oj练习

  1. 单值二叉树。OJ链接
  2. 检查两颗树是否相同。OJ链接
  3. 对称二叉树。OJ链接
  4. 二叉树的前序遍历。OJ链接
  5. 二叉树中序遍历。OJ链接
  6. 二叉树的后序遍历。OJ链接
  7. 另一颗树的子树。OJ链接


5.二叉树的创建和销毁

二叉树的构建及遍历。OJ链接

5.1 通过前序遍历构建二叉树

通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树,'#'代表空。

代码实现:

//开辟树节点空间
BTNode* BuyNode(char x)
{
    BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    newnode->data = x;
    newnode->left = newnode->right = NULL;
    return newnode;
}
//构建树
BTNode* CreatTree(char* arr,int*i)
{
    if(arr[*i] =='#')
    {
        (*i)++;
        return NULL;
    }
    BTNode* node = BuyNode(arr[*i]);
    (*i)++;
    node->left = CreatTree(arr,i);
    node->right = CreatTree(arr,i);
    return node;
}
int main() 
{
    char arr[] = "ABD##E#H##CF##G##";
    int i = 0;
    //传递下标的地址,这样就可以通过地址修改下标。
    BTNode* tree = CreatTree(arr, &i);
    return 0;
}

5.2 销毁二叉树

这里是后序思想,先释放左右子树,最后释放根节点。

// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
  if (*root == NULL)
  {
    return;
  }
  BinaryTreeDestory(&((*root)->left));
  BinaryTreeDestory(&((*root)->right)); 
  free(*root);
  *root = NULL;
}

5.3 判断二叉树是否为完全二叉树

这里也是通过队列进行判断,之前层次遍历空树不进队,而这里空树进队,当出队时遇到空时,停止出队,判断队列中是否有非空,如果有就不是完全二叉树

代码实现:

// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
  Queue q;
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    if (front != NULL)
    {
      QueuePop(&q);
      QueuePush(&q, front->left);
      QueuePush(&q, front->right);
    }
    else
    {
      //遇到空就跳出
      break;
    }
  }
  //检查后面节点有没有非空
  //有非空就不是完全二叉树
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    QueuePop(&q);
    if (front != NULL) 
      return 0;//不是
  }
  return 1;//是
}


本篇结束!

相关文章
|
14天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
57 16
|
14天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
63 8
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
19 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
20 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
27 1
|
1月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
24 1
|
1月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
24 0

热门文章

最新文章