揭秘 LlamaIndex|如何持久化存储 LlamaIndex 向量索引?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LlamaIndex 作为一个专为构建 LLM 应用设计的新工具,它可以为用户抽象出上述框架中的内容。

大模型时代什么最火?

除了 ChatGPT 以外,诸如 LangChain、LlamaIndex 等构建大模型应用设计的工具热度也一直居高不下。回到 LlamaIndex,随着 AGI 时代的到来,越来越多的开发者开始思考如何有效利用大模型,不过,大家在构建 LLM 应用时普遍会面临三大挑战:

  • LLM 的使用成本高昂
  • LLM 无法及时提供最新信息
  • LLM 缺乏特定专业领域的知识

针对上述问题,业界主流的做法是采用两种主要框架:微调和缓存 + 注入。

微调主要是针对后两点挑战(缺乏正确信息)的解决方法,而缓存 + 注入则是为了解决使用成本高昂的问题。同时,缓存 + 注入的框架也被称为 CVP 架构(即 ChatGPT + Vector Database + Prompt-as-Code)。

在此情况下,LlamaIndex 应运而生。作为一个专为构建 LLM 应用设计的新工具,它可以为用户抽象出上述框架中的内容。

本文为【揭秘 LlamaIndex 系列】,我们将着重讲解如何在 LlamaIndex 中创建并存储向量索引及 2 种持久化存储向量索引的方法。

01. LlamaIndex 简介

LlamaIndex 可以看作管理用户数据和 LLM 之间交互的工具。LlamaIndex 接收输入数据并为其构建索引,随后使用该索引来回答与输入数据相关的问题。LlamaIndex 可以根据手头的任务构建许多类型的索引,例如:向量索引、树索引、列表索引或关键字索引。

每个索引都有其优点和适用场景。例如,列表索引适用于需要处理大量文档的场景;向量索引适用于语义搜索系统;树索引适用于处理稀疏信息的场景;关键字索引适用于查找特定关键字的场景。

在使用 LlamaIndex 时,我们可以存储并加载上述索引进行会话管理。通常情况下,可以本地存储索引上下文。如果想要使用持久化存储引擎来存储索引,以便在后续应用搭建过程中使用,可以参照下文的教程。

02. 创建并保存 LlamaIndex 向量索引

以下教程直接使用了 LlamaIndex 仓库中示例文件夹(https://github.com/jerryjliu/llama_index/tree/main/examples/paul_graham_essay)的数据。请先在本地克隆仓库,并在 paul_graham_essay文件夹中创建 notebook,或从该文件夹直接下载数据,在本地使用代码。

- 使用本地向量数据库

本教程中,我们使用开源向量数据库 Milvus 的 Milvus Lite 版本。使用 Milvus Lite 版本,可以直接在 notebook 中运行代码,无需任何额外的工作。

1. 安装所需软件和环境。不过用户需要 OpenAI API key 才可以使用 GPT 模型,如果需要将 OpenAI API key 存储在.env文件中,请务必安装python-dotenv库。

pip install Milvus llama-index python-dotenv

2. 导入

llama_index中导入GPTVectorStoreIndexStorageContext以及vector_stores模块中的 MilvusVectorStore

  • 从 Milvus 中导入default_server
  • 导入了osload_dotenv以加载 API key
from llama_index import GPTVectorStoreIndex, StorageContext
from llama_index.vector_stores import MilvusVectorStore
from milvus import default_server
from dotenv import load_dotenv
import os
load_dotenv()
open_api_key = os.getenv("OPENAI_API_KEY")

3. 启动向量数据库

  • 调用 default_server上的 start()命令来启动本地 Milvus Lite 实例。
  • 使用 MilvusVectorStore连接向量存储,并传入主机和端口参数。
default_server.start()
vector_store = MilvusVectorStore(
   host = "127.0.0.1",
   port = default_server.listen_port
)

4.配置存储上下文,以便 LlamaIndex 了解在哪里存储索引。然后使用 GPTVectorStoreIndex创建索引,并传入创建索引的文档和存储上下文。随后我们就可以像平常一样查询索引。

本例中,我们通过 "What did the author do growing up?(作者成长过程中做了哪些事?)"这个问题进行查询。查询时,系统会为这个问题创建向量索引,从而抽象出“作者”、“成长”等词汇的语义。

storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GPTVectorStoreIndex.from_documents(
   documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")

查询后,得到的响应如下:

“Growing up, the author wrote short stories, programmed on an IBM 1401, and nagged his father to buy him a TRS-80 microcomputer. …”(成长过程中,作者写了短篇小说、在一台 IBM 1401 计算机上编程,并劝说他父亲为其购买一台 TRS-80 微型计算机。……)

- 使用云端向量数据库

需要注意的是,如果遇到海量数据,我们推荐使用云端向量数据库来存储 LlamaIndex 向量索引。

以下教程中使用了 Zilliz Cloud向量数据库。Zilliz Cloud 提供全托管的 Milvus 服务。使用 Zilliz Cloud 前,请先注册账号,并创建 1 个 Collection。

与 Milvus 不同,使用 Zilliz Cloud 时需要提供 HOST、PORT、USER和PASSWORD。你可以在 Zilliz Cloud 界面中查看上述主机、端口、用户名和密码信息。

✅ 以下为正确代码示例:

vector_store = MilvusVectorStore(
   host = HOST
   port = PORT,
   user = USER,
   password = PASSWORD,
   use_secure = True,
   overwrite = True
)

❌ 以下为错误代码示例:

vector_store = MilvusVectorStore(
   host = "127.0.0.1",
   port = default_server.listen_port
)

本文最初发表于 Toward AI,已获得转载许可。

如果在使用 Milvus 或 Zilliz 产品有任何问题,可添加小助手微信 “zilliz-tech” 加入交流群。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
存储 自然语言处理 API
LlamaIndex使用指南
LlamaIndex是一个方便的工具,它充当自定义数据和大型语言模型(llm)(如GPT-4)之间的桥梁,大型语言模型模型功能强大,能够理解类似人类的文本。LlamaIndex都可以轻松地将数据与这些智能机器进行对话。这种桥梁建设使你的数据更易于访问,为更智能的应用程序和工作流铺平了道路。
4423 0
|
存储 前端开发 机器人
通过4个任务比较LangChain和LlamaIndex
我们在本地使用大模型的时候,尤其是构建RAG应用的时候,一般会有2个成熟的框架可以使用
2693 2
|
机器学习/深度学习 自然语言处理 机器人
【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人
LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。
|
3月前
|
存储 自然语言处理 算法
RAG系统文本分块优化指南:9种实用策略让检索精度翻倍
本文深入探讨了RAG系统中的九种文本分块策略。固定大小分块简单高效,但可能破坏语义完整性;基于句子和语义的分块保留上下文,适合语义任务;递归与滑动窗口分块灵活控制大小;层次化和主题分块适用于结构化内容;特定模态分块处理多媒体文档;智能代理分块则通过大语言模型实现动态优化。开发者需根据文档类型、需求及资源选择合适策略,以提升RAG系统的性能和用户体验。作者Cornellius Yudha Wijaya详细分析了各策略的技术特点与应用场景。
586 1
RAG系统文本分块优化指南:9种实用策略让检索精度翻倍
|
2月前
|
人工智能 自然语言处理 测试技术
掌握这5个要点,选对Embedding模型助力RAG系统
三桥君深入解析RAG系统中的Embedding模型选择问题,探讨其在语义理解与检索中的关键作用,并结合任务需求、资源条件等提供实用选型建议。
708 0
|
监控 数据处理 索引
整合LlamaIndex与LangChain构建高级的查询处理系统
该文阐述了如何结合LlamaIndex和LangChain构建一个扩展性和定制性强的代理RAG应用。LlamaIndex擅长智能搜索,LangChain提供跨平台兼容性。代理RAG允许大型语言模型访问多个查询引擎,增强决策能力和多样化回答。文章通过示例代码展示了如何设置LLM、嵌入模型、LlamaIndex索引及查询引擎,并将它们转换为LangChain兼容的工具,实现高效、精准的问题解答。通过多代理协作,系统能处理复杂查询,提高答案质量和相关性。
844 0
|
8月前
|
人工智能 数据可视化 开发者
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。
590 14
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
|
JSON 数据可视化 API
GraphRAG+Ollama,构建本地精准全局问答系统!
RAG 是目前大语言模型相关最知名的工具之一,从外部知识库中检索事实,以便为大型语言模型 (LLM) 提供最准确、最新的信息。
|
10月前
|
存储 人工智能 自然语言处理
基于LLamaIndex构建企业级私有知识库:RAG Workflow工作流详解
【11月更文挑战第12天】随着生成式AI的快速发展,企业对智能化信息检索和生成的需求日益增加。传统的知识库系统往往局限于静态的数据存储和查询,难以满足复杂多变的业务需求。而检索增强生成(RAG, Retrieval-Augmented Generation)技术的出现,为企业级私有知识库的建设提供了新的解决方案。LLamaIndex作为专为LLMs(大型语言模型)设计的私有知识索引工具,结合RAG Workflow工作流,能够构建高效、智能的企业级私有知识库,满足企业对于知识管理和智能问答的多样化需求。
1526 4
|
存储 数据可视化 知识图谱
使用Llama index构建多代理 RAG
检索增强生成(RAG)已成为增强大型语言模型(LLM)能力的一种强大技术。通过从知识来源中检索相关信息并将其纳入提示,RAG为LLM提供了有用的上下文,以产生基于事实的输出。
428 0