Apache Doris Profile&Explain详解1

简介: Apache Doris Profile&Explain详解1

Apache Doris Profile&Explain详解

一、简述

Apache Doris中运行EXPLAIN + SQL就可以得到SQL对应的Query Plan,再结合Apche Doris的Profile可以了解Doris是如何处理SQL语句,用于分析查询语句或是结构的性能瓶颈,从而帮助选择更好的索引和写出更优化的查询语句。

二、Plan分析

2.1 sql准备

tpcds query96.sql为例

explain
-- explain graph 生成对应执行计划图表
select  count(*)
from store_sales
    ,household_demographics
    ,time_dim
    , store
where ss_sold_time_sk = time_dim.t_time_sk
    and ss_hdemo_sk = household_demographics.hd_demo_sk
    and ss_store_sk = s_store_sk
    and time_dim.t_hour = 8
    and time_dim.t_minute >= 30
    and household_demographics.hd_dep_count = 5
    and store.s_store_name = 'ese'
order by count(*) limit 100;

2.2 explain结果分析

Query Plan可以分为逻辑执行计划(Logical Query Plan)和物理执行计划(Physical Query Plan),当前讲述的Query Plan默认指逻辑执行计划;tpcds query96.sql对应的Query Plan展示如下。

-- graph 
                                         ┌───────────────┐
                                        │[8: ResultSink]│
                                        │[Fragment: 4]  │
                                        │RESULT SINK    │
                                        └───────────────┘
                                         ┌─────────────┐
                                         │[8: TOP-N]   │
                                         │[Fragment: 4]│
                                         └─────────────┘
                               ┌────────────────────────────────┐
                               │[13: AGGREGATE (merge finalize)]│
                               │[Fragment: 4]                   │
                               └────────────────────────────────┘
                                        ┌──────────────┐
                                        │[12: EXCHANGE]│
                                        │[Fragment: 4] │
                                        └──────────────┘
                                     ┌────────────────────┐
                                     │[12: DataStreamSink]│
                                     │[Fragment: 0]       │
                                     │STREAM DATA SINK    │
                                     │  EXCHANGE ID: 12   │
                                     │  UNPARTITIONED     │
                                     └────────────────────┘
                               ┌─────────────────────────────────┐
                               │[7: AGGREGATE (update serialize)]│
                               │[Fragment: 0]                    │
                               └─────────────────────────────────┘
                                ┌───────────────────────────────┐
                                │[6: HASH JOIN]                 │
                                │[Fragment: 0]                  │
                                │join op: INNER JOIN (BROADCAST)│
                                └───────────────────────────────┘
                                    ┌───────────┴─────────────────────────────────────┐
                                    │                                                 │
                    ┌───────────────────────────────┐                         ┌──────────────┐
                    │[4: HASH JOIN]                 │                         │[11: EXCHANGE]│
                    │[Fragment: 0]                  │                         │[Fragment: 0] │
                    │join op: INNER JOIN (BROADCAST)│                         └──────────────┘
                    └───────────────────────────────┘                                 │
                    ┌───────────────┴─────────────────────┐                           │
                    │                                     │                ┌────────────────────┐
    ┌───────────────────────────────┐             ┌──────────────┐         │[11: DataStreamSink]│
    │[2: HASH JOIN]                 │             │[10: EXCHANGE]│         │[Fragment: 3]       │
    │[Fragment: 0]                  │             │[Fragment: 0] │         │STREAM DATA SINK    │
    │join op: INNER JOIN (BROADCAST)│             └──────────────┘         │  EXCHANGE ID: 11   │
    └───────────────────────────────┘                     │                │  UNPARTITIONED     │
          ┌─────────┴──────────┐                          │                └────────────────────┘
          │                    │               ┌────────────────────┐                ┌┘
┌──────────────────┐    ┌─────────────┐        │[10: DataStreamSink]│                │
│[0: OlapScanNode] │    │[9: EXCHANGE]│        │[Fragment: 2]       │       ┌─────────────────┐
│[Fragment: 0]     │    │[Fragment: 0]│        │STREAM DATA SINK    │       │[5: OlapScanNode]│
│TABLE: store_sales│    └─────────────┘        │  EXCHANGE ID: 10   │       │[Fragment: 3]    │
└──────────────────┘           │               │  UNPARTITIONED     │       │TABLE: store     │
                               │               └────────────────────┘       └─────────────────┘
                     ┌───────────────────┐                │
                     │[9: DataStreamSink]│                │
                     │[Fragment: 1]      │ ┌─────────────────────────────┐
                     │STREAM DATA SINK   │ │[3: OlapScanNode]            │
                     │  EXCHANGE ID: 09  │ │[Fragment: 2]                │
                     │  UNPARTITIONED    │ │TABLE: household_demographics│
                     └───────────────────┘ └─────────────────────────────┘
                      ┌─────────────────┐
                      │[1: OlapScanNode]│
                      │[Fragment: 1]    │
                      │TABLE: time_dim  │
                      └─────────────────┘
-- 非graph 
PLAN FRAGMENT 0
 OUTPUT EXPRS:<slot 11> <slot 10> count(*)
  PARTITION: UNPARTITIONED
  RESULT SINK
  8:TOP-N
  |  order by: <slot 11> <slot 10> count(*) ASC
  |  offset: 0
  |  limit: 100
  |  
  13:AGGREGATE (merge finalize)
  |  output: count(<slot 10> count(*))
  |  group by: 
  |  cardinality=-1
  |  
  12:EXCHANGE
PLAN FRAGMENT 1
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`store_sales`.`ss_item_sk`, `default_cluster:tpcds`.`store_sales`.`ss_ticket_number`
  STREAM DATA SINK
    EXCHANGE ID: 12
    UNPARTITIONED
  7:AGGREGATE (update serialize)
  |  output: count(*)
  |  group by: 
  |  cardinality=1
  |  
  6:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_store_sk` = `s_store_sk`
  |  runtime filters: RF000[in] <- `s_store_sk`
  |  cardinality=2880403
  |  
  |----11:EXCHANGE
  |    
  4:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_hdemo_sk` = `household_demographics`.`hd_demo_sk`
  |  runtime filters: RF001[in] <- `household_demographics`.`hd_demo_sk`
  |  cardinality=2880403
  |  
  |----10:EXCHANGE
  |    
  2:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_sold_time_sk` = `time_dim`.`t_time_sk`
  |  runtime filters: RF002[in] <- `time_dim`.`t_time_sk`
  |  cardinality=2880403
  |  
  |----9:EXCHANGE
  |    
  0:OlapScanNode
     TABLE: store_sales
     PREAGGREGATION: OFF. Reason: conjunct on `ss_sold_time_sk` which is StorageEngine value column
     PREDICATES: `default_cluster:tpcds.store_sales`.`__DORIS_DELETE_SIGN__` = 0
     runtime filters: RF000[in] -> `ss_store_sk`, RF001[in] -> `ss_hdemo_sk`, RF002[in] -> `ss_sold_time_sk`
     partitions=1/1
     rollup: store_sales
     tabletRatio=3/3
     tabletList=20968,20972,20976
     cardinality=2880403
     avgRowSize=67.95811
     numNodes=3
PLAN FRAGMENT 2
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`store`.`s_store_sk`
  STREAM DATA SINK
    EXCHANGE ID: 11
    UNPARTITIONED
  5:OlapScanNode
     TABLE: store
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `store`.`s_store_name` = 'ese', `default_cluster:tpcds.store`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: store
     tabletRatio=3/3
     tabletList=20773,20777,20781
     cardinality=23
     avgRowSize=1798.8695
     numNodes=3
PLAN FRAGMENT 3
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`household_demographics`.`hd_demo_sk`
  STREAM DATA SINK
    EXCHANGE ID: 10
    UNPARTITIONED
  3:OlapScanNode
     TABLE: household_demographics
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `household_demographics`.`hd_dep_count` = 5, `default_cluster:tpcds.household_demographics`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: household_demographics
     tabletRatio=3/3
     tabletList=20848,20852,20856
     cardinality=14399
     avgRowSize=2.8781166
     numNodes=3
PLAN FRAGMENT 4
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`time_dim`.`t_time_sk`
  STREAM DATA SINK
    EXCHANGE ID: 09
    UNPARTITIONED
  1:OlapScanNode
     TABLE: time_dim
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `time_dim`.`t_hour` = 8, `time_dim`.`t_minute` >= 30, `default_cluster:tpcds.time_dim`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: time_dim
     tabletRatio=3/3
     tabletList=20713,20717,20721
     cardinality=172799
     avgRowSize=11.671202
     numNodes=3
相关文章
|
1月前
|
存储 自然语言处理 BI
|
1月前
|
Apache Java 数据库连接
Apache Doris 2.0.15 版本发布
Apache Doris 2.0.15 版本已于 2024 年 9 月 30 日正式与大家见面,该版本提交了 157 个改进项以及问题修复,进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
2月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
18天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
6天前
|
SQL 存储 数据处理
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
Apache Doris 物化视图进行了支持。**早期版本中,Doris 支持同步物化视图;从 2.1 版本开始,正式引入异步物化视图,[并在 3.0 版本中完善了这一功能](https://www.selectdb.com/blog/1058)。**
|
13天前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
19天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
19天前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
|
1月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
1月前
|
存储 小程序 Apache
10月26日@杭州,飞轮科技 x 阿里云举办 Apache Doris Meetup,探索保险、游戏、制造及电信领域数据仓库建设实践
10月26日,由飞轮科技与阿里云联手发起的 Apache Doris 杭州站 Meetup 即将开启!
54 0

推荐镜像

更多
下一篇
无影云桌面