Pandas+Pyecharts | 北京某平台二手房数据分析可视化

简介: Pandas+Pyecharts | 北京某平台二手房数据分析可视化

本期导读

大家好,我是欧K。


本期用pandas进行数据处理,pyecharts对处理后的数据进行可视化分析市面上二手房各项基本特征及房源分布情况,探索二手房大数据背后的规律,希望对你有所帮助,希望对你有所帮助。


涉及到的内容:


Pandas — 数据处理
Pyecharts — 数据可视化
1. 模块

1.1 导入模块

import pandas as pd
from pyecharts.charts import Map
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Grid
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts import options as opts

地图显示部分需要用到 pyecharts==1.9.0
已安装其他低版本的需要升级,如果未安装过pyecharts,直接pip安装就是最新版本。


1.2 查看 pyecharts 版本 

import pyecharts
pyecharts.__version__

2. Pandas数据处理


2.1 读取数据

代码:

df = pd.read_csv('二手房数据.csv', encoding = 'gb18030')
df.head()

结果



2.2 查看表格数据描述

df.describe()

结果:

一共有23677条数据。


2.3 查看表格是否有数据缺失

df.isnull().sum()

结果:

可以看到电梯数据缺失8257行,将缺失数据填充为“未知”:

df['电梯'].fillna('未知', inplace=True)


2.4 统计各城区二手房数量

代码:

g = df.groupby('市区')
df_region = g.count()['小区']
region = df_region.index.tolist()
count = df_region.values.tolist()
df_region

结果:

可以看出,丰台、朝阳、海淀、昌平在售的房源数量最多,高达12000多套,占了总量的1/2。


3. Pyecharts可视化


3.1 北京各城区二手房数量地图分布

代码:

g = df.groupby('市区')
df_region = g.count()['小区']
region = df_region.index.tolist()
count = df_region.values.tolist()
new = [x + '区' for x in region]
m = (
        Map()
        .add('', [list(z) for z in zip(new, count)], '北京')
        .set_global_opts(
            title_opts=opts.TitleOpts(title='北京市二手房各区分布'),
            visualmap_opts=opts.VisualMapOpts(max_=3000),
        )
    )
m.render_notebook()

效果:



3.2 各城区二手房数量-平均价格柱状图

代码:

# 各城区二手房数量-平均价格柱状图
df_price = g.mean()['价格(万元)']
price = [round(x,2) for x in df_price.values.tolist()]
bar = (
    Bar()
    .add_xaxis(region)
    .add_yaxis('数量', count,
              label_opts=opts.LabelOpts(is_show=True))
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="价格(万元)",
            type_="value",
            min_=200,
            max_=900,
            interval=100,
            axislabel_opts=opts.LabelOpts(formatter="{value}"),
        )
    )
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(
            is_show=True, trigger="axis", axis_pointer_type="cross"
        ),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
        ),
        yaxis_opts=opts.AxisOpts(name='数量',
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=False),)
    )
)
line2 = (
    Line()
    .add_xaxis(xaxis_data=region)
    .add_yaxis(
        series_name="价格",
        yaxis_index=1,
        y_axis=price,
        label_opts=opts.LabelOpts(is_show=True),
        z=10)
)
bar.overlap(line2)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render_notebook()

效果:



3.3 二手房价格最高Top15

代码:

top_price = df.sort_values(by="价格(万元)",ascending=False)[:15]
area = top_price['小区'].values.tolist()
count = top_price['价格(万元)'].values.tolist()
bar0 = (
    Bar()
    .add_xaxis(area).set_series_opts(label_opts=opts.LabelOpts(position="right"))
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(name='面积(㎡)'),
        xaxis_opts=opts.AxisOpts(name='数量'),
    )
)
bar0.render_notebook()

效果:



3.4 装修情况/有无电梯玫瑰图

代码:

df_fitment = g1.count()['小区']
fitment = df_fitment.index.tolist()
count1 = df_fitment.values.tolist()
df_direction = g2.count()['小区']
directions = df_direction.index.tolist()
count2 = df_direction.values.tolist()
bar = (
    Bar()
    .add_xaxis(fitment)
    .add_yaxis('', count1, category_gap = '50%')
    .reversal_axis()
    .set_series_opts(label_opts=opts.LabelOpts(position='right'))
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(name='装修情况'),
        xaxis_opts=opts.AxisOpts(name='数量'),
        title_opts=opts.TitleOpts(title='',pos_left='33%',pos_top="5%"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="58%",orient="vertical")
    )
)
c2 = (
    Pie(init_opts=opts.InitOpts(
            width='800px', height='600px',
            )
       )
        .add(
        '',
        [list(z) for z in zip(directions, count2)],
        radius=['10%', '30%'],
        center=['75%', '65%'],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=True),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title='有/无电梯',pos_left='33%',pos_top="5%"),
                        legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="15%",orient="vertical")
                        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} \n ({d}%)'),position="outside")
    )
bar.overlap(c2)
bar.render_notebook()

效果:



3.5 二手房总价与面积散点图


代码:

from pyecharts.charts import Scatter
s = (
    Scatter()
    .add_xaxis(df['面积(㎡)'].values.tolist())
    .add_yaxis('',df['价格(万元)'].values.tolist())
    .set_global_opts(xaxis_opts=opts.AxisOpts(name='面积(㎡)',type_='value'),
                    yaxis_opts=opts.AxisOpts(name='价格(万元)'),)
)
s.render_notebook()

效果:


完。


4. 完整代码+数据


https://www.heywhale.com/mw/project/60d05c29056f570017c0f756

END


以上就是本期为大家整理的全部内容了,赶快练习起来吧,喜欢的朋友可以点赞、点在看也可以分享让更多人知道

相关文章
|
4月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
130 0
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
81 2
|
4月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
4月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
4月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
7月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
118 2
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
348 4
|
7月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
133 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
4月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
256 4
数据分析的 10 个最佳 Python 库
|
4月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。