Pandas+Pyecharts | 北京某平台二手房数据分析可视化

简介: Pandas+Pyecharts | 北京某平台二手房数据分析可视化

本期导读

大家好,我是欧K。


本期用pandas进行数据处理,pyecharts对处理后的数据进行可视化分析市面上二手房各项基本特征及房源分布情况,探索二手房大数据背后的规律,希望对你有所帮助,希望对你有所帮助。


涉及到的内容:


Pandas — 数据处理
Pyecharts — 数据可视化
1. 模块

1.1 导入模块

import pandas as pd
from pyecharts.charts import Map
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Grid
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts import options as opts

地图显示部分需要用到 pyecharts==1.9.0
已安装其他低版本的需要升级,如果未安装过pyecharts,直接pip安装就是最新版本。


1.2 查看 pyecharts 版本 

import pyecharts
pyecharts.__version__

2. Pandas数据处理


2.1 读取数据

代码:

df = pd.read_csv('二手房数据.csv', encoding = 'gb18030')
df.head()

结果



2.2 查看表格数据描述

df.describe()

结果:

一共有23677条数据。


2.3 查看表格是否有数据缺失

df.isnull().sum()

结果:

可以看到电梯数据缺失8257行,将缺失数据填充为“未知”:

df['电梯'].fillna('未知', inplace=True)


2.4 统计各城区二手房数量

代码:

g = df.groupby('市区')
df_region = g.count()['小区']
region = df_region.index.tolist()
count = df_region.values.tolist()
df_region

结果:

可以看出,丰台、朝阳、海淀、昌平在售的房源数量最多,高达12000多套,占了总量的1/2。


3. Pyecharts可视化


3.1 北京各城区二手房数量地图分布

代码:

g = df.groupby('市区')
df_region = g.count()['小区']
region = df_region.index.tolist()
count = df_region.values.tolist()
new = [x + '区' for x in region]
m = (
        Map()
        .add('', [list(z) for z in zip(new, count)], '北京')
        .set_global_opts(
            title_opts=opts.TitleOpts(title='北京市二手房各区分布'),
            visualmap_opts=opts.VisualMapOpts(max_=3000),
        )
    )
m.render_notebook()

效果:



3.2 各城区二手房数量-平均价格柱状图

代码:

# 各城区二手房数量-平均价格柱状图
df_price = g.mean()['价格(万元)']
price = [round(x,2) for x in df_price.values.tolist()]
bar = (
    Bar()
    .add_xaxis(region)
    .add_yaxis('数量', count,
              label_opts=opts.LabelOpts(is_show=True))
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="价格(万元)",
            type_="value",
            min_=200,
            max_=900,
            interval=100,
            axislabel_opts=opts.LabelOpts(formatter="{value}"),
        )
    )
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(
            is_show=True, trigger="axis", axis_pointer_type="cross"
        ),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
        ),
        yaxis_opts=opts.AxisOpts(name='数量',
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=False),)
    )
)
line2 = (
    Line()
    .add_xaxis(xaxis_data=region)
    .add_yaxis(
        series_name="价格",
        yaxis_index=1,
        y_axis=price,
        label_opts=opts.LabelOpts(is_show=True),
        z=10)
)
bar.overlap(line2)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render_notebook()

效果:



3.3 二手房价格最高Top15

代码:

top_price = df.sort_values(by="价格(万元)",ascending=False)[:15]
area = top_price['小区'].values.tolist()
count = top_price['价格(万元)'].values.tolist()
bar0 = (
    Bar()
    .add_xaxis(area).set_series_opts(label_opts=opts.LabelOpts(position="right"))
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(name='面积(㎡)'),
        xaxis_opts=opts.AxisOpts(name='数量'),
    )
)
bar0.render_notebook()

效果:



3.4 装修情况/有无电梯玫瑰图

代码:

df_fitment = g1.count()['小区']
fitment = df_fitment.index.tolist()
count1 = df_fitment.values.tolist()
df_direction = g2.count()['小区']
directions = df_direction.index.tolist()
count2 = df_direction.values.tolist()
bar = (
    Bar()
    .add_xaxis(fitment)
    .add_yaxis('', count1, category_gap = '50%')
    .reversal_axis()
    .set_series_opts(label_opts=opts.LabelOpts(position='right'))
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(name='装修情况'),
        xaxis_opts=opts.AxisOpts(name='数量'),
        title_opts=opts.TitleOpts(title='',pos_left='33%',pos_top="5%"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="58%",orient="vertical")
    )
)
c2 = (
    Pie(init_opts=opts.InitOpts(
            width='800px', height='600px',
            )
       )
        .add(
        '',
        [list(z) for z in zip(directions, count2)],
        radius=['10%', '30%'],
        center=['75%', '65%'],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=True),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title='有/无电梯',pos_left='33%',pos_top="5%"),
                        legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="15%",orient="vertical")
                        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} \n ({d}%)'),position="outside")
    )
bar.overlap(c2)
bar.render_notebook()

效果:



3.5 二手房总价与面积散点图


代码:

from pyecharts.charts import Scatter
s = (
    Scatter()
    .add_xaxis(df['面积(㎡)'].values.tolist())
    .add_yaxis('',df['价格(万元)'].values.tolist())
    .set_global_opts(xaxis_opts=opts.AxisOpts(name='面积(㎡)',type_='value'),
                    yaxis_opts=opts.AxisOpts(name='价格(万元)'),)
)
s.render_notebook()

效果:


完。


4. 完整代码+数据


https://www.heywhale.com/mw/project/60d05c29056f570017c0f756

END


以上就是本期为大家整理的全部内容了,赶快练习起来吧,喜欢的朋友可以点赞、点在看也可以分享让更多人知道

相关文章
|
2月前
|
自然语言处理 数据挖掘 数据处理
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
139 3
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
|
9月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
305 71
|
3月前
|
SQL 存储 缓存
基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践
从 BigQuery 到开放数据湖,区块链情报公司 TRM Labs 的数据平台演进实践
|
9月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
378 73
|
8月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
254 22
|
9月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
358 5
|
10月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
221 2
|
10月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
10月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
10月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南