袋鼠云数栈 DataOps 数据生产力实践,实现数据流程的自动化和规范化

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 袋鼠云数栈在7年多的研发历程中为上千家客户提供了数据生产效率提升解决方案,也在这个过程中不断地将 DataOps 的理念融合到产品中,助力越来越多的企业成功实现数字化转型升级。本文将就数栈基于 DataOps 的敏捷、高质量数据生产力实践进行分享,希望对大家有所帮助。

袋鼠云产品团队在帮助企业进行数字化转型实践的过程中,发现很多企业在数据生产链路上都有着相同的问题。包括数据团队聚焦于业务需求短期内的快速交付,内部缺少自顶向下的数据生产管理制度,在数据标准、数据生产流程到研发规范的各个层面均存在不完善与不规范之处;很多环节依赖人工操作,团队协作效率低,业务需求影响慢,存在大量的重复数据建设;先开发后治理的模式也往往导致历史债越来越沉重。


数字化转型实践走在前列的企业都在积极寻找数据生产效率提升的办法,而 DataOps 的出现,从理论和实践上形成了一套成熟的解决方案,让上述问题迎刃而解。


作为国内领先的数字化基础软件与应用服务商,袋鼠云数栈在7年多的研发历程中为上千家客户提供了数据生产效率提升解决方案,也在这个过程中不断地将 DataOps 的理念融合到产品中,助力越来越多的企业成功实现数字化转型升级。


本文将就数栈基于 DataOps 的敏捷、高质量数据生产力实践进行分享,希望对大家有所帮助。

DataOps 基础概念

如果说数据中台的崛起代表着企业数字化转型从流程驱动走向数据驱动,从数字化走向智能化。那么 DataOps,则是实现数据中台的一个优秀的理念或方法论。


DataOps 的概念早在2014年即由 Lenny Liebmann 提出,2018年 DataOps 正式被纳入 Gartner 的数据管理技术成熟度曲线当中,标志着 DataOps 正式被业界所接纳并推广起来。


信通院和大数据技术标准推进委员会在今年的数据资产管理大会中提出,DataOps(数据研发运营一体化)是一种面向数据全生命周期,以价值最大化为目标的最佳实践。它通过重构企业内数据生产组织、流程和工具,综合利用研发管理、交付管理、数据运维三项核心技术能力,价值运营、系统工具、组织管理、安全风险四项保障能力来实现数据研发运营的一体化、敏捷化、精益化、自动化、智能化、价值显性化理念。


目前国内已经有包括工商银行、农业银行、浙江移动、联通数科等企业成功实践了 DataOps,实现了数据生产力的跃迁。

数栈基于 DataOps 的数据运营实践

数栈是袋⿏云打造的⼀站式⼤数据基础软件,包含⼤数据基础平台、⼤数据开发与治理、数据智能分析与洞察多系列产品,融合 DataOps 数据运营理念,以自主可控、安全创新为技术内核,将全域数据资产进行汇聚、加⼯、治理、服务、分析,为企业提供安全、稳定、易⽤的⼤数据平台,洞察数字化机遇,明确转型方向,创造数据新价值。


数栈的 DataOps 实践路线如下图:

解决方案层面数栈经过银行、基金、证券、保险、高校、政务、港口、制造等多个行业的实践已经储备了丰富的成功经验,可以根据企业的业务和数字化现状从业务蓝图、数据资产、组织转型、技术选型和实施路径规划方面进行量身设计。


针对数据治理过程,数栈将多年沉淀的方法论进行了产品化,以下是结合产品层的一些具体操作分享。

数据集成

数据集成即将来自业务系统、API、文件等数据源中的数据通过离线或实时的方式抽取到数栈大数据平台的过程。抽取作业的配置是否灵活简便,工具能否适配企业多种多样的数据来源,数据的传输是否稳定,是否存在错漏及抽取性能的优劣是所有用户的核心关注点。数栈自研的分布式批流一体同步工具 ChunJun 给出了优秀的解决方案。

基于 ChunJun 实现的数据集成,能够30秒可视化地配置离线和实时数据同步任务,实现多源异构数据的双向同步,可通过提升并发度和设置同步速率上限来灵活地调控同步性能,支持系统异常中断后数据同步的断点续传,支持整库批量生成同步任务,也支持将同步过程中读取或写入异常的数据记录脏数据表进行异常分析。



数据抽取完成后元数据也会落到数栈的元数据库,用户可在数据资产的数据地图中进行表元数据查询。

数据标准定义、建表规范设计及标准化建表

数据资产模块可以对表字段的数据标准进行定义,从词根、码表、字段的业务属性和技术属性上进行定义规范,避免同一字段在不同表中定义、名称不一致等问题。数栈平台内置了部分行业的标准模版,同时也支持数据标准的一键导入,帮助用户快速进行数据标准的建立与管理。

建表规范设计中主要支持定义数仓层级、层级的表名模型元素组成和模型元素内容,用于约束后续的数据模型构建中表名的统一规范。

基于建表规范,从资产进行标准化建表,配置基础信息时平台会自动关联表所属数仓层级让用户进行技术属性的定义,从而构成标准化表名。

image.png

基于数据标准,用户在定义表结构时只需填写表字段内容,平台解析后将自动映射到同名数据标准并在执行建表时进行标准覆盖率检测,在规范化的基础上简化建表操作。

逻辑模型与指标设计

数据模型中展示了最基础的事实表和维表之间的基本关系,方便后续创建指标时,直接基于已经固化好的数据关系进行开发。

数栈指标管理平台DataIndex 可按业务进行指标体系梳理,汇总成每个业务领域的指标目录。

针对每个指标,可定义其名称、编码、业务口径、加工逻辑、调度属性等信息。

数据开发、数据质量校验与代码的统一管理

数栈支持离线开发与实时开发两种数据开发模式,下面以离线开发为例介绍数据开发流程。


首先管理员可以配置 SQL 开发规范,当前平台内置了一些 SQL 规范检查规则,此外也可根据开发说明自行开发一些检查规则注册到平台。这些检查规则生效后平台将在 SQL 运行前和提交前对代码进行扫描,在扫描结果发现的异常中,若触发的是提示规则,即轻微的不规范,则会给出提示但不影响运行和提交;若触发的是阻断规则,那么数据开发将无法进行运行和提交。以此来事前规避一些高危的 SQL 操作及不必要的占用大量资源的任务运行等情况。

用户可在离线开发中通过工作流来编排一个数据开发业务流程,编写每个任务的代码并配置调度属性和任务依赖。

在离线开发平台内创建的任务,代码可对接至远端仓库(Bitbucket、GitLab)进行拉取和推送,实现企业内部代码的统一管理,也常用于初始化大数据平台替换时任务的批量迁移。

SQL 代码测试无误并提交后一般由运维人员将任务打包发布至另一个项目,发布过程中将前置校验发布包内容是否完整,可在数栈审批中心开启发布审批流程,由审批角色把控发布的规范性和影响。


针对金融场景下测试和生产环境网络隔离的情况,发布过程也可对接企业内部统一的审批中心,审批通过后通过 jenkins 等工具完成跨网络的发布包传输实现任务投产。

同时有两个十分重要的问题:数据生产出来如何评估质量?出现质量问题时能否及时中断业务流程并通知开发人员及时处理?


数据资产平台DataAssets 支持单表和多表质量校验,单表校验内置完整性、准确性、规范性、唯一性校验规则,用户也可以通过自定义 SQL 来进行个性化的数据校验;多表校验可实现两张表的数据比对,例如可以在数据同步场景中校验源端和目标端数据读写是否存在错漏。


当质量任务和离线任务产生关联时,通过配置质量校验的强弱规则和告警可实现重要质量问题及时中止任务流的运行并通知相关开发人员。

数据服务

经过数栈平台生产的数据可通过 API、自助查询、数据同步至外部库的方式对外提供服务,常应用于报表、大屏、标签、数据门户等上层数据应用。

安全管理

● 用户认证

支持对接企业的单点登陆,支持 LDAP、Oauth2 等认证方式,可配置多层级的 Kerberos 认证

● 数据权限管理

数栈平台层可实现 Hadoop 下的数据权限管理,可将数据进行自动识别划分成不同的等级,在特定的 Hadoop 版本下也支持对接 Ranger 开启引擎的权限策略,另外也可对接企业已有的数据权限管理体系

● 审批流程对接

表、API 等数据资源的权限申请,数据标准、离线任务的发布等涉及权限点变更或内部上线的流程均可对接数栈内的审批中心进行管理。

● 操作审计

任务运行、表的 DDL 操作、增删用户、权限申请等所有关键操作都会记录审计列表。

未来数栈还将继续完善数据治理全链路,通过产品体验优化、工具智能升级提升数据生产的质量和效率,不断为企业数据价值的发挥提供动力和保障。


《数据治理行业实践白皮书》下载地址:https://fs80.cn/380a4b

《数栈V6.0产品白皮书》下载地址:https://fs80.cn/cw0iw1

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szalykfz

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术 qun」,交流最新开源技术信息,qun 号码:30537511,项目地址:https://github.com/DTStack

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
5天前
|
敏捷开发 人工智能 Devops
探索自动化测试的高效策略与实践###
当今软件开发生命周期中,自动化测试已成为提升效率、保障质量的关键工具。本文深入剖析了自动化测试的核心价值,探讨了一系列高效策略,包括选择合适的自动化框架、设计可维护的测试脚本、集成持续集成/持续部署(CI/CD)流程,以及有效管理和维护测试用例库。通过具体案例分析,揭示了这些策略在实际应用中的成效,为软件测试人员提供了宝贵的经验分享和实践指导。 ###
|
4天前
|
机器学习/深度学习 人工智能 jenkins
软件测试中的自动化与持续集成实践
在快速迭代的软件开发过程中,自动化测试和持续集成(CI)是确保代码质量和加速产品上市的关键。本文探讨了自动化测试的重要性、常见的自动化测试工具以及如何将自动化测试整合到持续集成流程中,以提高软件测试的效率和可靠性。通过案例分析,展示了自动化测试和持续集成在实际项目中的应用效果,并提供了实施建议。
|
5天前
|
Java 测试技术 持续交付
探索自动化测试在软件开发中的关键作用与实践
在现代软件开发流程中,自动化测试已成为提升产品质量、加速交付速度的不可或缺的一环。本文深入探讨了自动化测试的重要性,分析了其在不同阶段的应用价值,并结合实际案例阐述了如何有效实施自动化测试策略,以期为读者提供一套可操作的实践指南。
|
5天前
|
Web App开发 敏捷开发 测试技术
探索自动化测试的奥秘:从理论到实践
【10月更文挑战第39天】在软件质量保障的战场上,自动化测试是提升效率和准确性的利器。本文将深入浅出地介绍自动化测试的基本概念、必要性以及如何实施自动化测试。我们将通过一个实际案例,展示如何利用流行的自动化测试工具Selenium进行网页测试,并分享一些实用的技巧和最佳实践。无论你是新手还是有经验的测试工程师,这篇文章都将为你提供宝贵的知识,帮助你在自动化测试的道路上更进一步。
|
5天前
|
敏捷开发 Java 测试技术
探索自动化测试:从理论到实践
【10月更文挑战第39天】在软件开发的海洋中,自动化测试是一艘能够带领团队高效航行的船只。本文将作为你的航海图,指引你理解自动化测试的核心概念,并分享一段实际的代码旅程,让你领略自动化测试的魅力和力量。准备好了吗?让我们启航!
|
6天前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
7天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
20 1
|
10天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
12天前
|
运维 负载均衡 Ubuntu
自动化运维的利器:Ansible入门与实践
【10月更文挑战第31天】在当今快速发展的信息技术时代,高效的运维管理成为企业稳定运行的关键。本文将引导读者了解自动化运维工具Ansible的基础概念、安装步骤、基本使用,以及如何通过实际案例掌握其核心功能,从而提升工作效率和系统稳定性。
|
15天前
|
NoSQL 测试技术 Go
自动化测试在 Go 开源库中的应用与实践
本文介绍了 Go 语言的自动化测试及其在 `go mongox` 库中的实践。Go 语言通过 `testing` 库和 `go test` 命令提供了简洁高效的测试框架,支持单元测试、集成测试和基准测试。`go mongox` 库通过单元测试和集成测试确保与 MongoDB 交互的正确性和稳定性,使用 Docker Compose 快速搭建测试环境。文章还探讨了表驱动测试、覆盖率检查和 Mock 工具的使用,强调了自动化测试在开源库中的重要性。