PyTorch 神经网络模型可视化(Netron)

简介: PyTorch 神经网络模型可视化(Netron)

PyTorch 神经网络模型可视化(Netron

Netron 是一个用于可视化深度学习模型的工具,可以帮助我们更好地理解模型的结构和参数。

支持以下格式的模型存储文件:

格式 模板(文件) 免下载打开
ONNX squeezenet open
TensorFlow Lite yamnet open
TensorFlow chessbot open
Keras mobilenet open
TorchScript traced_online_pred_layer open
Core ML exermote open
Darknet yolo open

GitHub 链接:https://github.com/lutzroeder/netron

官网:https://netron.app


ONNX

(1)在 PyTorch 中,可以使用 torch.onnx.export 函数将模型导出为 ONNX 格式:

import torch
import netron
# 定义 PyTorch 模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.bn = torch.nn.BatchNorm2d(64)
        self.relu = torch.nn.ReLU(inplace=True)
        self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
# 创建模型实例并加载预训练权重
model = MyModel()
# 设置示例输入
input = torch.randn(1, 3, 32, 32)
# 将模型导出为 ONNX 格式
torch.onnx.export(model, input, './model/Test/onnx_model.onnx')  # 导出后 netron.start(path) 打开

(2)再使用 Netron 的 netron.start 指令打开导出的 ONNX 模型文件:

import netron
# 打开导出的 ONNX 模型文件
netron.start('./model/Test/onnx_model.onnx')
Serving './model/Test/onnx_model.onnx' at http://localhost:8080

将在浏览器中自动启动 Netron 工具,并对该模型文件进行可视化。

注意:

当模型被导出为 ONNX 格式,会在指定目录生成以 .onnx 为后缀的文件,只需将其上传至 Netron 官网 也可实现可视化:

在 Netron 中,可以查看模型的结构、参数和输入输出等信息。可以通过缩放、旋转和平移等操作来调整模型的可视化效果,以更好地理解模型的结构和参数。

torch.save

当使用 torch.save 对保存的模型进行可视化时:

# 保存模型
torch.save(model.state_dict(), './model/Test/saved_model.pt')
# 可视化
netron.start('./model/Test/saved_model.pt')

如下图,这种方式并不能显示该模型的详细信息:

所以: Netron 不支持 PyTorch 通过 torch.save 方式导出的模型文件。

torch.jit.script

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.script 先将模型转换为脚本,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:script
scripted_model = torch.jit.script(model)
# 保存模型
torch.jit.save(scripted_model, './model/Test/scripted_model.pth')
# 可视化
netron.start('./model/Test/scripted_model.pth')

torch.jit.trace

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.trace 先将模型转换为跟踪模型执行的工具,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:trace
traced_model = torch.jit.trace(model, torch.randn(1, 3, 32, 32))
# 保存模型
torch.jit.save(traced_model, './model/Test/traced_model.pth')
# 可视化
netron.start('./model/Test/traced_model.pth')

目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
223 2
|
11天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
36 2
|
12天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
33 1
|
1月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
75 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
23天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
28天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
41 0
|
1月前
|
存储 分布式计算 负载均衡
下一篇
无影云桌面