Hinge Loss 和 Zero-One Loss

简介: Hinge Loss 和 Zero-One Loss

Hinge Loss 和 Zero-One Loss

维基百科:https://en.wikipedia.org/wiki/Hinge_loss

图表说明:

  • 纵轴表示固定 t = 1 t=1t=1 的 Hinge loss(蓝色)和 Zero-One Loss(绿色)的值,而横轴表示预测值 y yy 的值。
  • 该图显示,Hinge loss 惩罚了预测值 y < 1 y < 1y<1,对应于支持向量机中的边际概念。

Hinge Loss

Hinge Loss是一种常用的机器学习损失函数,通常用于支持向量机(SVM)模型中的分类问题。该函数的定义如下:

image.png

其中,y i y_iyi 是样本的真实标签,f ( x ) f(x)f(x) 是模型的预测值。该函数的取值范围是非负实数,当预测值和真实值之间的误差越大时,损失函数的值越大。

当样本被正确分类时,image.png此时 Hinge Loss 的取值为0,表示模型分类正确,没有产生误差。

当样本被错误分类时,image.png此时 Hinge Loss 的取值为image.png表示模型的分类错误,并且分类误差越大,Hinge Loss 的值就越大。

Hinge Loss 的目标是最小化分类误差,同时鼓励模型产生较大的间隔(即正确分类和分类超平面之间的距离)。

在支持向量机中,目标是找到一个最大间隔的超平面来分类样本,因此,可以将 Hinge Loss 和间隔相关联。对于一个样本点 image.png其与超平面之间的距离为:

image.png

其中,w b 是支持向量机模型中的权重和偏置。image.png

image.png

因此,Hinge Loss 不仅能够表达分类误差,还能够促进模型产生较大的间隔,从而增加模型的泛化能力。

Zero-One Loss

Zero-One Loss 是机器学习中的一种常见的分类损失函数。对于一个二分类问题,image.pngZero-One Loss 定义为:

image.png

也就是说,当模型的预测结果与真实标签一致时,Zero-One Loss为0;否则,Loss为1。从表达式上可以看出,Zero-One Loss对预测的错误惩罚非常高,因为无论错误的预测有多么接近正确,Loss都会被计算为1。与其他的损失函数相比,Zero-One Loss往往被认为是一种非常严格的评估方式。

然而,由于 Zero-One Loss 本身是不可导的,因此在训练模型时通常会选择使用一些可导的近似函数,如 Hinge Loss 或 Cross Entropy Loss 等。相对于 Zero-One Loss,这些损失函数更为平滑,可以帮助模型更快、更稳定地收敛。

需要注意的是,尽管 Zero-One Loss 在评估模型性能时非常严格,但在实际应用中往往不是最优的选择。特别是当数据集中的标签存在一定的噪声时,使用 Zero-One Loss 可能会导致模型过于拟合训练集,而无法有效地泛化到测试集。因此,在实际应用中,我们通常会使用更加平滑的损失函数,同时结合一些常见的正则化技术,如L1/L2正则化等,来控制模型的复杂度和泛化能力。

目录
相关文章
训练损失图(Training Loss Plot)
训练损失图(Training Loss Plot)是一种在机器学习和深度学习过程中用来监控模型训练进度的可视化工具。损失函数是衡量模型预测结果与实际结果之间差距的指标,训练损失图展示了模型在训练过程中,损失值随着训练迭代次数的变化情况。通过观察损失值的变化,我们可以评估模型的拟合效果,调整超参数,以及确定合适的训练停止条件。
2195 5
bypy:使用Linux命令行上传及下载百度云盘文件(远程服务器大文件传输必备)
bypy:使用Linux命令行上传及下载百度云盘文件(远程服务器大文件传输必备)
bypy:使用Linux命令行上传及下载百度云盘文件(远程服务器大文件传输必备)
|
5月前
|
【linux】Shell脚本中basename和dirname的详细用法教程
本文详细介绍了Linux Shell脚本中 `basename`和 `dirname`命令的用法,包括去除路径信息、去除后缀、批量处理文件名和路径等。同时,通过文件备份和日志文件分离的实践应用,展示了这两个命令在实际脚本中的应用场景。希望本文能帮助您更好地理解和应用 `basename`和 `dirname`命令,提高Shell脚本编写的效率和灵活性。
390 32
|
9月前
|
Zipfile学习笔记(一):通过zipfile模块实现文件的压缩和解压
使用Python的zipfile模块来实现文件的压缩和解压,通过具体代码示例展示了压缩和解压的过程。
192 2
Zipfile学习笔记(一):通过zipfile模块实现文件的压缩和解压
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
141 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
揭秘安卓与iOS系统的差异:技术深度对比
【10月更文挑战第27天】 本文深入探讨了安卓(Android)与iOS两大移动操作系统的技术特点和用户体验差异。通过对比两者的系统架构、应用生态、用户界面、安全性等方面,揭示了为何这两种系统能够在市场中各占一席之地,并为用户提供不同的选择。文章旨在为读者提供一个全面的视角,理解两种系统的优势与局限,从而更好地根据自己的需求做出选择。
767 2
DeepMind前成员推出Haiper:AI视频生成赛道再添新势力
【2月更文挑战第16天】DeepMind前成员推出Haiper:AI视频生成赛道再添新势力
493 2
DeepMind前成员推出Haiper:AI视频生成赛道再添新势力
转置卷积-清晰易懂
转置卷积(Transpose Convolution)是一种用于图像上采样的技术,常用于图像分割、生成对抗网络(GAN)等领域。与传统的上采样方法不同,转置卷积通过学习参数来实现更优的插值效果。本文介绍了转置卷积的背景、应用、与标准卷积的区别以及数学推导,帮助读者深入理解其原理和应用场景。
888 1
【机器学习】在使用K-means算法之前,如何预处理数据?
【5月更文挑战第12天】【机器学习】在使用K-means算法之前,如何预处理数据?
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等