Softmax Classifier 多分类问题

简介: Softmax Classifier 多分类问题

8、Softmax Classifier 多分类问题

B站视频教程传送门:PyTorch深度学习实践 - 多分类问题

8.1 Revision

1、Diabetes dataset: 糖尿病数据集

对该数据集做了二分类,并且该二分类网络的输出,概率其一: Py^=1,概率其二: Py^=0=1Py^=1

2、MNIST Dataset: MNIST数据集

在该数据集中,由于是做手写数字识别,所以共有10种不同的分类标签。

8.2 Softmax

试想:如果有10个分类,应当如何设计神经网络?

8.2.1 Design

如上图,在最后输出的时候,可将原来只有一个 P(y=1) 的输出变成10个输出(因为有10个分类),就能输出该样本属于每一个分类的概率,如下表:

分类 概率
y 1 ^ \hat {y_1}y1^ P ( y = 0 ) P(y=0)P(y=0)
y 2 ^ \hat {y_2}y2^ P ( y = 1 ) P(y=1)P(y=1)
y 10 ^ \hat {y_{10}}y10^ P ( y = 9 ) P(y=9)P(y=9)

注意:我们是将每一个类别看作一个二分类问题,且最后每个输出值需满足两个要求:①≥ 0 \geq 00,②∑ = 1 \sum = 1=1,即输出的是一个分布。

所以,在处理多分类问题时,在最终输出层我们使用 Softmax,即最后输出满足以下两个条件:

P(y=i)0(1)

P(y=i)=1(2)

8.2.2 Softmax Layer

Softmax到底是怎么实现的?用了一个什么样的计算来保证这10个元素:

问题 1:经过线性运算后,神经网络输出值可正可负,怎么将其变成正值?

问题 2:怎么让其和等于1?

假设 Z l ∈ R k Z^l \in \mathbb{R}^kZlRk 是最后一个线性层的输出,Softmax函数:

P(y=i)=j=0k1eZjeZi,i{0,...,K1}(3)

Example:

  Loss(Y^,Y)=YlogY^(4)

8.2.3 NLLLoss vs CrossEntropyLoss

one-hot:独热编码(One-Hot)及其代码

NLLLoss:https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html?highlight=nllloss#torch.nn.NLLLoss

Numpy 中:

import numpy as np
z = np.array([0.2, 0.1, -0.1])
y = np.array([1, 0, 0])
y_pred = np.exp(z) / np.exp(z).sum()
print(y_pred)
loss = (- y * np.log(y_pred)).sum()
print(loss)
[0.37797814 0.34200877 0.28001309]
0.9729189131256584

CrossEntropyLoss:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss

PyTorch 中:

import torch
z = torch.Tensor([[0.2, 0.1, -0.1]])
y = torch.LongTensor([0])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z, y)
print(loss)
tensor(0.9729)

CrossEntropyLoss<==>LogSoftmax+NLLLoss

神经网络的最后一层不需要做激活(经过Softmax层的计算),直接输入到CrossEntropyLoss损失函数中即可。

8.2.4 Mini-Batch

import torch
criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2, 0, 1])
Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],
                        [1.1, 0.1, 0.2],
                        [0.2, 2.1, 0.1]])
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],
                        [0.2, 0.3, 0.5],
                        [0.2, 0.2, 0.5]])
loss_1 = criterion(Y_pred1, Y)
loss_2 = criterion(Y_pred2, Y)
print('Batch Loss1 =', loss_1.data, '\nBatch Loss2 =', loss_2.data)
Batch Loss1 = tensor(0.4966) 
Batch Loss2 = tensor(1.2389)

8.3 MNIST dataset

以下是 MNIST 手写数据集中的一个图像:

8.3.1 Import Package

import torch
from torchvision import transforms  # 构造 DataLoader
from torch.utils.data import DataLoader  # 同上
from torchvision import datasets
import torch.nn.functional as F  # 激活函数 relu()
import torch.optim as optim  # 构造优化器

8.3.2 Prepare Dataset

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),  # 将PIL Image 转换为 Tensor
    transforms.Normalize((0.1307,), (0.3081,))  # 均值 和 标准差
])
train_dataset = datasets.MNIST(root='../data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

1、ToTensor():将 PIL Image 转换成 PyTorch Tensor

PILImage:Z28×28,pixel{0,...,255}

PyTorchTensor:R1×28×28,pixel[0,1]

2、Normalize((mean, ), (std, )):均值 标准差,数据归一化

Pixelnorm=stdPixeloriginmean

8.3.3 Design Model

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)
    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # 最后一层 不需要激活
model = Net()

8.3.4 Construct Loss and Optimizer

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 进一步优化,momentum:冲量

8.3.5 Train and Test

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()  # 清零
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 不需要计算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

8.3.6 完整代码

import torch
from torchvision import transforms  # 构造 DataLoader
from torch.utils.data import DataLoader  # 同上
from torchvision import datasets
import torch.nn.functional as F  # 激活函数 relu()
import torch.optim as optim  # 构造优化器
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),  # 将PIL Image 转换为 Tensor
    transforms.Normalize((0.1307,), (0.3081,))  # 均值 和 标准差
])
train_dataset = datasets.MNIST(root='../data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)
    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # 最后一层 不需要激活
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 进一步优化,momentum:冲量
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()  # 清零
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %3d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 不需要计算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1, 300] loss: 2.228
[1, 600] loss: 1.029
[1, 900] loss: 0.434
Accuracy on test set: 89 %
[2, 300] loss: 0.321
[2, 600] loss: 0.268
[2, 900] loss: 0.237
Accuracy on test set: 93 %
[3, 300] loss: 0.192
[3, 600] loss: 0.172
[3, 900] loss: 0.153
Accuracy on test set: 95 %
[4, 300] loss: 0.131
[4, 600] loss: 0.123
[4, 900] loss: 0.111
Accuracy on test set: 96 %
[5, 300] loss: 0.092
[5, 600] loss: 0.097
[5, 900] loss: 0.092
Accuracy on test set: 97 %
[6, 300] loss: 0.077
[6, 600] loss: 0.071
[6, 900] loss: 0.076
Accuracy on test set: 96 %
[7, 300] loss: 0.060
[7, 600] loss: 0.059
[7, 900] loss: 0.061
Accuracy on test set: 97 %
[8, 300] loss: 0.045
[8, 600] loss: 0.049
[8, 900] loss: 0.052
Accuracy on test set: 97 %
[9, 300] loss: 0.039
[9, 600] loss: 0.038
[9, 900] loss: 0.040
Accuracy on test set: 97 %
[10, 300] loss: 0.032
[10, 600] loss: 0.032
[10, 900] loss: 0.034
Accuracy on test set: 97 %

8.4 Kaggle Exercise

Otto Group Product Classification Challenge:https://www.kaggle.com/competitions/otto-group-product-classification-challenge

代码如下:

import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torch.optim as optim
# 数据预处理
# 定义函数将类别标签转为id表示,方便后面计算交叉熵
def labels2id(labels):
    target_id = []  # 给所有target建立一个词典
    target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8',
                     'Class_9']  # 自定义9个标签
    for label in labels:  # 遍历labels中的所有label
        target_id.append(target_labels.index(label))  # 添加label对应的索引项到target_labels中
    return target_id
class OttogroupDataset(Dataset):  # 准备数据集
    def __init__(self, filepath):
        data = pd.read_csv(filepath)
        labels = data['target']
        self.len = data.shape[0]  # 多少行多少列
        # 处理特征和标签
        self.x_data = torch.tensor(np.array(data)[:, 1:-1].astype(float))  # 1:-1 左闭右开
        self.y_data = labels2id(labels)
    def __getitem__(self, index):  # 魔法方法 支持dataset[index]
        return self.x_data[index], self.y_data[index]
    def __len__(self):  # 魔法函数 len() 返回长度
        return self.len
# 载入训练集
train_dataset = OttogroupDataset('../data/Otto Group Product Classification Challenge/train.csv')
# 建立数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, num_workers=0)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(93, 64)  # 93个feature
        self.l2 = torch.nn.Linear(64, 32)
        self.l3 = torch.nn.Linear(32, 16)
        self.l4 = torch.nn.Linear(16, 9)
        self.relu = torch.nn.ReLU()  # 激活函数
    def forward(self, x):  # 正向传播
        x = self.relu(self.l1(x))
        x = self.relu(self.l2(x))
        x = self.relu(self.l3(x))
        return self.l4(x)  # 最后一层不做激活,不进行非线性变换
    def predict(self, x):  # 预测函数
        with torch.no_grad():  # 梯度清零 不累计梯度
            x = self.relu(self.l1(x))
            x = self.relu(self.l2(x))
            x = self.relu(self.l3(x))
            x = self.relu(self.l4(x))
            # 这里先取出最大概率的索引,即是所预测的类别。
            _, predicted = torch.max(x, dim=1)
            # 将预测的类别转为one-hot表示,方便保存为预测文件。
            y = pd.get_dummies(predicted)
            return y
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 冲量,冲过鞍点和局部最优
def train(epoch):  # 单次循环 epoch决定循环多少次
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader):
        inputs, target = data  # 输入数据
        inputs = inputs.float()
        optimizer.zero_grad()  # 优化器归零
        # 前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()  # 累计的损失
        if batch_idx % 300 == 299:  # 每300轮输出一次
            print('[%d, %3d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
# 定义预测保存函数,用于保存预测结果。
def predict_save():
    test_data = pd.read_csv('../data/Otto Group Product Classification Challenge/test.csv')
    test_inputs = torch.tensor(
        np.array(test_data)[:, 1:].astype(float))  # test_data是series,要转为array;[1:]指的是第一列开始到最后,左闭右开,去掉‘id’列
    out = model.predict(test_inputs.float())  # 调用预测函数,并将inputs 改为float格式
    # 自定义新的标签
    labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6',
              'Class_7', 'Class_8', 'Class_9']
    # 添加列标签
    out.columns = labels
    # 插入id行
    out.insert(0, 'id', test_data['id'])
    output = pd.DataFrame(out)
    output.to_csv('../data/Otto Group Product Classification Challenge/my_predict.csv', index=False)
    return output
predict_save()
[1, 300] loss:1.584
[1, 600] loss:0.898
[1, 900] loss:0.799
[2, 300] loss:0.741
[2, 600] loss:0.721
[2, 900] loss:0.694
[3, 300] loss:0.672
[3, 600] loss:0.670
[3, 900] loss:0.662
[4, 300] loss:0.645
[4, 600] loss:0.648
[4, 900] loss:0.631
[5, 300] loss:0.623
[5, 600] loss:0.630
[5, 900] loss:0.611
[6, 300] loss:0.609
[6, 600] loss:0.600
[6, 900] loss:0.599
[7, 300] loss:0.586
[7, 600] loss:0.584
[7, 900] loss:0.594
[8, 300] loss:0.586
[8, 600] loss:0.568
[8, 900] loss:0.568
[9, 300] loss:0.566
[9, 600] loss:0.568
[9, 900] loss:0.566
[10, 300] loss:0.556
[10, 600] loss:0.552
[10, 900] loss:0.559


目录
相关文章
|
机器学习/深度学习 数据挖掘 PyTorch
Logistic Regression 逻辑斯蒂回归
Logistic Regression 逻辑斯蒂回归
178 0
|
Python 机器学习/深度学习
Cross Entropy Loss 交叉熵损失函数公式推导
表达式 输出标签表示为{0,1}时,损失函数表达式为: $L = -[y log \hat{y} + (1-y)log(1- \hat{y})]$ 二分类 二分类问题,假设 y∈{0,1} 正例:$P(y = 1| x) = \hat{y}$ 反例:$P(y=0|x) = 1-\hat{y}$ 取似然函数 似然函数就是所有样本在参数θ下发生概率最大的那种情况,由于样本独立同分布,因此概率最大的情况就是每个样本发生概率的连乘。
15957 0
|
机器学习/深度学习 数据采集
Softmax 分类器
机器学习中的 Softmax 分类器是一种常用的多分类模型,它将逻辑回归(Logistic Regression)推广到多分类问题中。在 Softmax 分类器中,我们使用一个二维平面(或多维空间中的超平面)来将不同类别的数据分开。这个超平面由一个线性函数决定,该线性函数可以表示为:y = w1 * x1 + w2 * x2 +... + wn * xn 其中,y 是输出变量(通常为类别的概率向量),x1, x2,..., xn 是输入变量,w1, w2,..., wn 是需要学习的权重。 Softmax 分类器的主要优点是它可以处
220 3
|
机器学习/深度学习 算法 PyTorch
Softmax回归(Softmax Regression)
Softmax回归(Softmax Regression),也称为多类别逻辑回归或多项式回归,是一种用于解决多类别分类问题的统计学习方法。它是逻辑回归在多类别情况下的扩展。
286 3
|
机器学习/深度学习 PyTorch 算法框架/工具
深入理解二分类和多分类CrossEntropy Loss和Focal Loss
多分类交叉熵就是对二分类交叉熵的扩展,在计算公式中和二分类稍微有些许区别,但是还是比较容易理解
1570 0
|
机器学习/深度学习 PyTorch 算法框架/工具
pytorch实现基本的logistic和softmax回归实验(手动+torch)
pytorch实现基本的logistic和softmax回归实验(手动+torch)
334 0
|
PyTorch 算法框架/工具
【pytorch】交叉熵损失函数 F.cross_entropy()
【pytorch】交叉熵损失函数 F.cross_entropy()
555 0
|
机器学习/深度学习 算法 TensorFlow
Softmax 多分类 | 学习笔记
快速学习 Softmax 多分类
Softmax 多分类 | 学习笔记
|
机器学习/深度学习
softmax回归的相关知识
机器学习在监督学习领域主要解决两个问题,分类和回归问题。
135 0
softmax回归的相关知识
|
机器学习/深度学习
Contrastive Loss(对比损失)
Contrastive Loss(对比损失)
871 0
Contrastive Loss(对比损失)

热门文章

最新文章