【PyTorch】Torchvision Models

简介: 【PyTorch】Torchvision Models

六、Torchvision Models

1、VGG

VGG参考文档:https://pytorch.org/vision/stable/models/vgg.html

VGG16为例:

https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16

ImageNet数据集:

https://pytorch.org/vision/stable/generated/torchvision.datasets.ImageNet.html#torchvision.datasets.ImageNet

ImageNet描述:

https://image-net.org/challenges/LSVRC/index.php

train_data = torchvision.datasets.ImageNet("../data", split="train", transform=torchvision.transforms.ToTensor(),
                                           download=True)

报错:需要手动下载!!!(100多G,还是算了吧)

RuntimeError: The archive ILSVRC2012_devkit_t12.tar.gz is not present in the root directory or is corrupted. You need to download it externally and place it in ../data.

import torchvision
vgg16_false = torchvision.models.vgg16(pretrained=False)  # False 加载网络模型 不需要下载
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

out_features=1000,输出为1000个类,如果想要输出10个类,应该如何?

1.1 add

(1)在VGG16中的features中添加add_linear:

import torchvision
from torch import nn
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)
vgg16_true.add_module('add_linear', nn.Linear(in_features=1000, out_features=10))
print(vgg16_true)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    ...
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
  (add_linear): Linear(in_features=1000, out_features=10, bias=True)
)

(2)在VGG16中的classifier中添加add_linear:

vgg16_true.classifier.add_module('add_linear', nn.Linear(in_features=1000, out_features=10))
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
    (6): Linear(in_features=4096, out_features=1000, bias=True)
    (add_linear): Linear(in_features=1000, out_features=10, bias=True)
  )
)

1.2 modify

直接将out_features=1000,修改为,输出100:

vgg16_true.classifier[6] = nn.Linear(in_features=1000, out_features=10)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
   ...
    (6): Linear(in_features=1000, out_features=10, bias=True)
  )
)

2、Save and Load

2.1 模型结构 + 模型参数

vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16, "../model/vgg16_method1.pth")
vgg16 = torch.load("../model/vgg16_method1.pth")
print(vgg16)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
  )
)

2.2 模型参数(官方推荐)

vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16.state_dict(), "../model/vgg16_method2.pth")

查看一下保存的字典:

vgg16 = torch.load("../model/vgg16_method2.pth")
print(vgg16)
OrderedDict([('features.0.weight', tensor([[[[-0.0108,  0.0403, -0.0032],
          [-0.0723,  0.0372, -0.1241],
          [-0.0583, -0.1042, -0.0469]],
          ...
          ...
          ...
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]))])

加载:

vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("../model/vgg16_method2.pth"))
print(vgg16)
VGG(
  (features): Sequential(
    ...
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    ...
  )
)

2.3 Trap

当我们使用第一种方式保存自己定义的网络模型时:

class Liang(nn.Module):
    def __init__(self):
        super(Liang, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
    def forward(self, x):
        x = self.conv1(x)
        return x
liang = Liang()
torch.save(liang, "../model/Liang.pth")

再使用第一种方式加载模型时:

liang = torch.load("../model/Liang.pth")
print(liang)

会报错:AttributeError: Can't get attribute 'Liang' on <module '__main__' from 'C:/Users/MK/Desktop/Pytorch/小土堆/program/TorchVision_Load Model.py'>>

解决方法一:加上class类

class Liang(nn.Module):
    def __init__(self):
        super(Liang, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
    def forward(self, x):
        x = self.conv1(x)
        return x
liang = torch.load("../model/Liang.pth")
print(liang)
Liang(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
)

解决方法二:引入

首先将class Liang类 写入all_class.py 文件中,再使用 from all_class import *,直接引用!

from all_class import *
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("../model/vgg16_method2.pth"))
liang = torch.load("../model/Liang.pth")
print(liang)
Liang(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
)


目录
相关文章
|
数据可视化 PyTorch 算法框架/工具
Pytorch可视化Visdom、tensorboardX和Torchvision
Pytorch可视化Visdom、tensorboardX和Torchvision
108 0
|
机器学习/深度学习 数据挖掘 PyTorch
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
|
7月前
|
PyTorch 算法框架/工具
win10下安装pytorch,torchvision遇到的bug
win10下安装pytorch,torchvision遇到的bug
|
PyTorch 算法框架/工具
【PyTorch】Torchvision
【PyTorch】Torchvision
93 0
|
自然语言处理 并行计算 PyTorch
基于Pytorch中安装torchvision简单详细完整版
基于Pytorch中安装torchvision简单详细完整版
2878 1
基于Pytorch中安装torchvision简单详细完整版
|
机器学习/深度学习 固态存储 PyTorch
pytorch中torchvision读取预训练模型
pytorch中torchvision读取预训练模型
214 0
pytorch中torchvision读取预训练模型
|
数据采集 机器学习/深度学习 PyTorch
Pytorch中基于MNIST数据的torchvision工具包应用
Pytorch中基于MNIST数据的torchvision工具包应用
145 0
Pytorch中基于MNIST数据的torchvision工具包应用
|
PyTorch 算法框架/工具 计算机视觉
Pytorch中torchvision包transforms模块应用小案例
Pytorch中torchvision包transforms模块应用小案例
175 0
Pytorch中torchvision包transforms模块应用小案例
|
机器学习/深度学习 存储 PyTorch
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(下)
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(下)
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(下)
|
PyTorch 算法框架/工具 Caffe
解决办法:KeyError: ‘ExpandBackward’及老版本pytorch/torchvision的安装办法。
解决办法:KeyError: ‘ExpandBackward’及老版本pytorch/torchvision的安装办法。
116 0