字节团队提出猞猁Lynx模型:多模态LLMs理解认知生成类榜单SoTA

简介: 字节团队提出猞猁Lynx模型:多模态LLMs理解认知生成类榜单SoTA

当前大语言模型 (Large Language Models, LLMs) 如 GPT4 在遵循给定图像的开放式指令方面表现出了出色的多模态能力。然而,这些模型的性能严重依赖于对网络结构、训练数据和训练策略等方案的选择,但这些选择并没有在先前的文献中被广泛讨论。此外,目前也缺乏合适的基准 (benchmarks) 来评估和比较这些模型,限制了多模态 LLMs 的 发展。



论文:https://arxiv.org/abs/2307.02469

网站:https://lynx-llm.github.io/

代码:https://github.com/bytedance/lynx-llm


在这篇文章中,作者从定量和定性两个方面对此类模型的训练进行了系统和全面的研究。设置了 20 多种变体,对于网络结构,比较了不同的 LLMs 主干和模型设计;对于训练数据,研究了数据和采样策略的影响;在指令方面,探讨了多样化提示对模型指令跟随能力的影响。对于 benchmarks ,文章首次提出包括图像和视频任务的开放式视觉问答评估集 Open-VQA。


基于实验结论,作者提出了 Lynx,与现有的开源 GPT4-style 模型相比,它在表现出最准确的多模态理解能力的同时,保持了最佳的多模态生成能力。


评估方案


不同于典型的视觉语言任务,评估 GPT4-style 模型的主要挑战在于平衡文本生成能力多模态理解准确性两个方面的性能。为了解决这个问题,作者提出了一种包含视频和图像数据的新 benchmark Open-VQA,并对当前的开源模型进行了全面的评价。


具体来说,采用了两种量化评价方案:


收集开放式视觉问答 (Open-VQA) 测试集,其包含关于物体、OCR、计数、推理、动作识别、时间顺序等不同类别的问题。不同于有标准答案的 VQA 数据集,Open-VQA 的答案是开放式的。为了评估 Open-VQA 上的性能,使用 GPT4 作为判别器,其结果与人类评估有 95% 的一致性。

此外,作者采用了由 mPLUG-owl [1] 提供的 OwlEval 数据集来评估模型的文本生成能力,虽然只包含 50 张图片 82 个问题,但涵盖故事生成、广告生成、代码生成等多样问题,并招募人工标注员对不同模型的表现进行打分。


结论


为了深入研究多模态 LLMs 的训练策略,作者主要从网络结构(前缀微调 / 交叉注意力)、训练数据(数据选择及组合比例)、指示(单一指示 / 多样化指示)、LLMs 模型(LLaMA [5]/Vicuna [6])、图像像素(420/224)等多个方面设置了二十多种变体,通过实验得出了以下主要结论:


多模态 LLMs 的指示遵循能力不如 LLMs。例如,InstructBLIP [2] 倾向于不管输入指令如何都生成简短的回复,而其他模型倾向于生成长句子而不考虑指令,作者认为这是由于缺乏高质量和多样化的多模态指令数据所导致的。

训练数据的质量对模型的性能至关重要。基于在不同的数据上进行实验的结果,发现使用少量的高质量数据比使用大规模的噪声数据表现得更好。作者认为这是生成式训练和对比式训练的区别,因为生成式训练是直接学习词的条件分布而不是文本和图像的相似度。因此,为了更好的模型性能,在数据方面需要满足两点:1)包含高质量的流畅文本;2)文本和图像内容对齐得较好。

任务和提示对零样本 (zero-shot) 能力至关重要。使用多样化任务和指令可以提升模型在未知任务上的零样本生成能力,这与纯文本模型中的观察结果一致。

平衡正确性和语言生成能力是很重要的。如果模型在下游任务 (如 VQA) 上训练不足,更可能生成与视觉输入不符的编造的内容;而如果模型在下游任务中训练过多,它则倾向于生成短答案,将无法按照用户的指示生成较长的答案。

前缀微调 (prefix-finetuning, PT) 是目前对 LLMs 进行多模态适配的最佳方案。在实验中,prefix-finetuning 结构的模型能更快地提升对多样化指示的遵循能力,比交叉注意力 (cross-attention, CA) 的模型结构更易训练。(prefix-tuning 和 cross-attention 为两种模型结构,具体见 Lynx 模型介绍部分)


Lynx 模型


作者提出了 Lynx(猞猁)—— 进行了两阶段训练的 prefix-finetuning 的 GPT4-style 模型。在第一阶段,使用大约 120M 图像 - 文本对来对齐视觉和语言嵌入 (embeddings) ;在第二阶段,使用 20 个图像或视频的多模态任务以及自然语言处理 (NLP) 数据来调整模型的指令遵循能力。



Lynx 模型的整体结构如上图 Figure 1 所示。


视觉输入经过视觉编码器处理后得到视觉令牌 (tokens) $$W_v$$,经过映射后与指令 tokens $$W_l$$ 拼接作为 LLMs 的输入,在本文中将这种结构称为prefix-finetuning」以区别于如 Flamingo [3] 所使用的 cross-attention 结构。


此外,作者发现,通过在冻结 (frozen) 的 LLMs 某些层后添加适配器 (Adapter) 可以进一步降低训练成本。


模型效果


作者测评了现有的开源多模态 LLMs 模型在 Open-VQA、Mme [4] 及 OwlEval 人工测评上的表现(结果见后文图表,评估细节见论文)。可以看到 Lynx 模型在 Open-VQA 图像和视频理解任务、OwlEval 人工测评及 Mme Perception 类任务中都取得了最好的表现。其中,InstructBLIP 在多数任务中也实现了高性能,但其回复过于简短,相较而言,在大多数情况下 Lynx 模型在给出正确的答案的基础上提供了简明的理由来支撑回复,这使得它对用户更友好(部分 cases 见后文 Cases 展示部分)。


1. 在 Open-VQA 图像测试集上的指标结果如下图 Table 1 所示:



2. 在 Open-VQA 视频测试集上的指标结果如下图 Table 2 所示。



3. 选取 Open-VQA 中得分排名靠前的模型进行 OwlEval 测评集上的人工效果评估,其结果如上图 Figure 4 所示。从人工评价结果可以看出 Lynx 模型具有最佳的语言生成性能。



4. 在 Mme benchmark 测试中,Perception 类任务获得最好的表现,其中 14 类子任务中有 7 个表现最优。(详细结果见论文附录)


Cases 展示


Open-VQA 图片 cases



OwlEval cases



Open-VQA 视频 case



总结


在本文中,作者通过对二十多种多模态 LLMs 变种的实验,确定了以 prefix-finetuning 为主要结构的 Lynx 模型并给出开放式答案的 Open-VQA 测评方案。实验结果显示 Lynx 模型表现最准确的多模态理解准确度的同时,保持了最佳的多模态生成能力。


参考文献

[1] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with multimodality. arXiv preprint arXiv:2304.14178, 2023.

[2] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. arXiv preprint arXiv:2305.06500, 2023.

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–23736, 2022.

[4] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2023.

[5] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL


相关文章
|
6月前
|
人工智能 算法
生成模型不适合处理视频,AI得在抽象空间中进行预测
生成模型不适合处理视频,AI得在抽象空间中进行预测
284 0
生成模型不适合处理视频,AI得在抽象空间中进行预测
|
6月前
|
自然语言处理 物联网 异构计算
比LoRA还快50%的微调方法来了!一张3090性能超越全参调优,UIUC联合LMFlow团队提出LISA
【4月更文挑战第3天】伊利诺伊大学香槟分校和LMFlow团队推出LISA,一种新型微调技术,用于解决大型语言模型的内存消耗问题。LISA基于层重要性采样,随机冻结中间层,降低内存使用,同时提供比LoRA更快的训练速度和更高性能。实验显示,LISA在相似或更低的GPU内存消耗下,超越LoRA和全参数调优。该方法提高了资源受限环境下的微调效率,有望成为LoRA的有效替代,但仍然面临内存限制和随机性影响的问题。
195 4
比LoRA还快50%的微调方法来了!一张3090性能超越全参调优,UIUC联合LMFlow团队提出LISA
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述(上)
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述(上)
38 2
|
1月前
|
机器学习/深度学习 人工智能 安全
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述(下)
【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述(下)
32 1
|
3月前
长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙
【8月更文挑战第10天】新研究NoCha挑战显示,即使是顶级的大型语言模型GPT-4o,在处理长篇幅文本时正确率仅55.8%,低于人类直观水平。该挑战基于近作英文小说,检验模型对整本书信息的理解与推理能力。结果显示,模型在全局推理上的表现不佳,倾向于依赖局部信息而非整体上下文,尤其是在复杂推理需求高的科幻小说上表现更弱。这一发现揭示了当前模型在处理长上下文任务上的局限性。论文链接: [https://arxiv.org/pdf/2406.16264](https://arxiv.org/pdf/2406.16264)。
124 65
|
2月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
79 10
|
3月前
|
存储 机器学习/深度学习 测试技术
模型量化技术综述:揭示大型语言模型压缩的前沿技术
在这篇文章中,我将在语言建模的背景下介绍量化,并逐一探讨各个概念,探索各种方法论、用例以及量化背后的原理。
54 0
模型量化技术综述:揭示大型语言模型压缩的前沿技术
|
4月前
|
自然语言处理 程序员
大模型问题之大模型与之前的NLP技术有什么显著差别
大模型问题之大模型与之前的NLP技术有什么显著差别
|
5月前
|
数据采集 机器学习/深度学习 人工智能
可信度超越GPT-4V,清华&面壁揭秘小钢炮模型背后的高效对齐技术
【6月更文挑战第15天】清华大学与面壁智能合作的RLAIF-V框架挑战GPT-4V,通过开源AI反馈增强大语言模型的可信度。该框架利用开放数据和在线学习优化对齐,减少幻觉错误,12B参数模型表现超越GPT-4V。虽有数据质量和稳定性问题,但展示出开源MLLMs潜力。[链接: https://arxiv.org/abs/2405.17220]
128 1
|
机器学习/深度学习 人工智能 自然语言处理
大语言模型综述全新出炉:51页论文带你盘点LLM领域专业化技术
大语言模型综述全新出炉:51页论文带你盘点LLM领域专业化技术
339 0