【状态估计】基于UKF法、AUKF法的电力系统三相状态估计研究(Matlab代码实现)

简介: 【状态估计】基于UKF法、AUKF法的电力系统三相状态估计研究(Matlab代码实现)

💥1 概述

基于UKF法和AUKF法的电力系统三相状态估计研究是一种利用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)以及其改进算法(Augmented Unscented Kalman Filter, AUKF)来进行电力系统三相状态估计的研究方法。


在电力系统中,三相状态估计是指通过测量数据和系统模型来估计电力系统中三相电压和电流的实时状态。三相状态估计在电力系统的运行和控制中具有关键作用,能够提供对电力系统的潮流、功率、电压稳定性等信息的高精度估计。


UKF是一种无迹卡尔曼滤波算法,通过选取一组特定的采样点(无迹)来对高斯分布进行逼近。UKF对非线性系统具有较好的适应性和稳定性,可以应对电力系统中存在的非线性和复杂特性。


AUKF是对UKF的改进,通过引入额外的状态变量和噪声向量,使得状态估计过程更具鲁棒性。AUKF通常用于处理电力系统中的非线性模型和高维系统的状态估计问题。


基于UKF法和AUKF法的电力系统三相状态估计研究可以涉及以下内容:


1. 系统建模:建立电力系统的数学模型,包括节点和支路的等效电路模型,考虑电压相位差和幅值约束的关系等。


2. 观测模型:定义观测方程,将实时的测量数据与电力系统的状态变量联系起来。包括电压、电流以及其他传感器测量数据。


3. 无迹卡尔曼滤波:使用UKF或AUKF算法进行状态估计,根据测量数据和系统模型,通过递推的方式更新和估计电力系统的三相状态变量。


4. 非线性问题处理:考虑电力系统中的非线性和复杂特性,利用UKF和AUKF算法有效处理非线性观测方程和状态方程。


5. 算法优化:对滤波算法的参数进行优化调整,例如选择合适的采样点和权重,以提高估计准确性和收敛速度。


通过基于UKF法和AUKF法的研究,可以实现电力系统的三相状态估计,并提供准确的潮流、功率、电压稳定性等信息,支持电力系统的运行和控制。但需要注意的是,具体的研究需要结合实际电力系统的特点和要求来设计和优化算法。


📚2 运行结果


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]卢云帆,邢丽坤,张梦龙等.基于UKF-AUKF锂电池在线参数辨识和SOC联合估计[J].电源技术,2022,46(10):1151-1155.


[2]王萍,弓清瑞,程泽等.基于AUKF的锂离子电池SOC估计方法[J].汽车工程,2022,44(07):1080-1087.DOI:10.19562/j.chinasae.qcgc.2022.07.014.


🌈4 Matlab代码及数据

相关文章
|
1月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
3月前
|
算法 测试技术 SoC
基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真
本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。
|
5月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
95 8
|
4月前
|
调度
基于蒙特卡洛的电力系统可靠性分析matlab仿真,对比EDNS和LOLP
电力系统可靠性评估研究,聚焦于LOLP(电力不足概率)和EDNS(期望缺供电量)的模拟分析。使用MATLAB2022a进行基于蒙特卡洛的仿真,模拟单线及多线故障,分析连锁效应。程序中通过随机断开线路,计算潮流,判断越限并用PSO优化。结果显示,LOLP和EDNS增加时,故障概率降低,但小概率大影响事件概率上升。以IEEE24-RTS系统为案例,考虑元件失效的马尔科夫过程,不考虑3个及以上元件失效情况,因为可能导致系统大规模崩溃。仿真步骤包括随机线路断开、故障分析和稳定性评估,涉及信息节点概率计算、潮流计算及优化决策。
|
5月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
59 0
|
5月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
6月前
|
关系型数据库 新能源 调度
【matlab测试与修正】考虑源荷两侧不确定性的含风电电力系统低碳调度
【matlab测试与修正】考虑源荷两侧不确定性的含风电电力系统低碳调度
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
175 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现