【ARIMA-SSA-LSTM】合差分自回归移动平均方法-麻雀优化-长短期记忆神经网络研究(Python代码实现)

简介: 【ARIMA-SSA-LSTM】合差分自回归移动平均方法-麻雀优化-长短期记忆神经网络研究(Python代码实现)

💥1 概述

1.1 ARIMA模型

差分自回归移动平均模型( ARIMA)元一PE用于各领域的预测模型 17-19],主要包含自回归模型和

移动平均模型2个部分。自回归模型的阶数为p,信号差分的阶数为d ,移动平均模型的阶数为q,因此模型通常表示成ARIMA( p,d ,q) ,具体的数学表达式为:



( 1)对所研究的时间序列数据进行平稳性验证,如果不满足要求,则对其进行d阶差分转换成平稳时间序列。

(2)通过自相关系数图和偏自相关系数图以及贝叶斯信息准则[201确定阶数p和q。

(3)采用确定好阶数的ARIMA( p , d , q)拟合时间序列,并根据预测后的数据和原时间序列进行结果统计和预测精度分析。


1.2 鲸鱼优化算法

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点


1.3 LSTM 模型

LSTM 深度学习算法与递归神经网络( Recurrent Neural Network ,RNN)的不同之处在于前者在后者的基础上加入了细胞状态和门结两个结构[ 16-17]以此来预测太阳能辐照强度,通过对比可发现LSTM模型的表现比时间递归型神经网络和隐马尔科夫模型的表现更好。


传统的RNN在解决时序长相关问题时存在梯度消失和梯度爆炸的问题,而细胞状态的作用是将具体信息连续地传递到RNN上,因此能够有效解决传统RNN存在的问题。ISTM是基于门控制单元结构的深度学习模型,通过遗忘门、输入门和输出门这三种门类型控制传输信息[18]。LSTM神经网络如图1所示,方框内是单个神经元细胞结构, c表示神经元细胞的状态值, h表示神经元细胞的输出值。LSTM 神经网络细胞的结构如图2所示。


📚2 运行结果

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]沈露露,梁嘉乐,周雯.基于ARIMA-LSTM的能量预测算法[J].无线电通信技术,2023,49(01):150-156.


[2]岑威钧,王肖鑫,蒋明欢.基于EEMD-LSTM-ARIMA的土石坝渗压预测模型研究[J].水资源与水工程学报,2023,34(02):180-185.


[3]王鑫,李安桂,李扬,卜令晨,彭怀午,牛东圣,许晨琛,韩欧.基于ARIMA-LSTM模型的综合能源系统负荷与风光资源预测[J].西安建筑科技大学学报(自然科学版),2022,54(05):762-769.DOI:10.15986/j.1006-7930.2022.05.015.


🌈4 Python代码实现

目录
打赏
0
0
0
0
78
分享
相关文章
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
169 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
312 10
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
320 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
488 2
7.1 NLP经典神经网络 RNN LSTM
该文章介绍了自然语言处理中的情感分析任务,探讨了如何使用深度神经网络,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),来处理和分析文本数据中的复杂情感倾向。
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
80 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析

推荐镜像

更多
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问