基于时空RBF神经网络的混沌时间序列预测(Matlab代码实现)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 基于时空RBF神经网络的混沌时间序列预测(Matlab代码实现)

💥1 概述

文献来源:


由于动态性质,混沌时间序列很难预测。在传统的信号处理方法中,信号仅在时域或空间域中处理。信号的时空分析通过利用来自时间和空间域的信息,提供了比传统的一维方法更多的优势。在此,我们提出了一种RBF神经网络的时空扩展,用于预测混沌时间序列。该算法利用时空正交性的概念,分别处理混沌级数的时间动力学和空间非线性(复杂度)。探索了所提出的RBF架构,用于麦基-格拉斯时间序列的预测,并将结果与标准RBF进行了对比。结果表明,时空RBF的性能优于标准RBFNN,可显著降低估计误差。


原文摘要:


Abstract:


Due to the dynamic nature, chaotic time series are difficult predict. In conventional signal processing approaches signals are treated either in time or in space domain only. Spatio-temporal analysis of signal provides more advantages over conventional uni-dimensional approaches by harnessing the information from both the temporal and spatial domains. Herein, we propose an spatio-temporal extension of RBF neural networks for the prediction of chaotic time series. The proposed algorithm utilizes the concept of time-space orthogonality and separately deals with the temporal dynamics and spatial non-linearity(complexity) of the chaotic series. The proposed RBF architecture is explored for the prediction of Mackey-Glass time series and results are compared with the standard RBF. The spatio-temporal RBF is shown to out perform the standard RBFNN by achieving significantly reduced estimation error.


📚2 运行结果

部分代码:

% Input and output signals (test phase)
figure
plot(ST_RBF.indts,ST_RBF.f_test,'k','linewidth',ST_RBF.lw);
hold on;
plot(RBF.indts,RBF.y_test,'.:b','linewidth',RBF.lw);
plot(ST_RBF.indts,ST_RBF.y_test,'--r','linewidth',ST_RBF.lw);
xlim([ST_RBF.start_of_series_ts+ST_RBF.time_steps ST_RBF.end_of_series_ts]);
h=legend('Actual Value (Testing)','RBF Predicted (Testing)','ST-RBF Predicted (Testing)','Location','Best');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('Magnitude','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTesting.png'),'png')
% Objective function (MSE) (training phase)
figure
plot(RBF.start_of_series_tr:RBF.end_of_series_tr-1,10*log10(RBF.I(1:RBF.end_of_series_tr-RBF.start_of_series_tr)),'+-b','linewidth',RBF.lw)
hold on
plot(ST_RBF.start_of_series_tr:ST_RBF.end_of_series_tr-1,10*log10(ST_RBF.I(1:ST_RBF.end_of_series_tr-ST_RBF.start_of_series_tr)),'+-r','linewidth',ST_RBF.lw)
h=legend('RBF (Training)','ST-RBF (Training)','Location','North');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('MSE (dB)','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTrainingMSE.png'),'png')
% Objective function (MSE) (test phase)
figure
plot(RBF.start_of_series_ts+RBF.time_steps:RBF.end_of_series_ts,10*log10(RBF.I(RBF.end_of_series_tr-RBF.start_of_series_tr+1:end)),'.:b','linewidth',RBF.lw+1)
hold on
plot(ST_RBF.start_of_series_ts+ST_RBF.time_steps:ST_RBF.end_of_series_ts,10*log10(ST_RBF.I(ST_RBF.end_of_series_tr-ST_RBF.start_of_series_tr+1:end)),'.:r','linewidth',ST_RBF.lw+1)
h=legend('RBF (Testing)','ST-RBF (Testing)','Location','South');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('MSE (dB)','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTestingMSE.png'),'png')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.


Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.


🌈4 Matlab代码实现

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
23天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
23天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真
本项目运用鲸鱼优化算法(WOA)优化卷积神经网络(CNN)与GRU网络的超参数,以提升时间序列预测精度。在MATLAB 2022a环境下,通过CNN提取时间序列的局部特征,而GRU则记忆长期依赖。WOA确保模型参数最优配置。代码附有中文注释及操作视频,便于理解和应用。效果预览无水印,直观展示预测准确性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MPSK调制识别matlab仿真
本项目展示一种基于CNN的MPSK调制识别算法,可在Matlab 2022a上运行。该算法能自动区分BPSK、QPSK及8PSK信号,利用卷积层捕捉相位特征并通过全连接层分类。训练过程涉及调整网络权重以最小化预测误差,最终实现对未知信号的有效识别。附带完整代码与说明视频。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
下一篇
无影云桌面