基于二进制草蝉优化算法选择特征并使用 KNN 进行训练(Matlab代码实现)

简介: 基于二进制草蝉优化算法选择特征并使用 KNN 进行训练(Matlab代码实现)

💥1 概述


基于二进制草蝉优化算法选择特征并使用KNN(K-Nearest Neighbors,K最近邻算法)进行训练是一种特征选择和分类算法的组合。这种方法主要用于解决特征选择问题,并利用选定的特征集合来训练KNN分类器。


下面是该算法的基本步骤:


特征选择:


采用二进制草蝉优化算法对原始特征集进行优化,从而选择出最佳特征子集。二进制草蝉优化算法是一种基于草蝉行为的启发式优化算法,用于解决特征选择问题。该算法通过模拟草蝉的生存行为来选择特征子集,以使得目标函数最小化或最大化。


特征提取:


通过二进制草蝉优化算法选择出的最佳特征子集,对原始数据集进行特征提取,得到一个新的数据集,该数据集只包含选定的特征。


数据预处理:


对特征提取后的数据集进行预处理,包括归一化、标准化或其他必要的数据处理步骤,以确保数据的可比性和有效性。


KNN分类器:


使用KNN算法来对处理后的数据集进行分类。KNN是一种常见的分类算法,它通过计算待分类样本与训练样本之间的距离,选取最近的K个训练样本,并根据这K个样本的分类标签来预测待分类样本的标签。


训练和测试:


使用经过特征选择和KNN分类器训练得到的模型,对测试数据进行分类,评估分类结果的准确性和性能。


需要注意的是,特征选择是为了去除冗余和噪音特征,提高分类性能和降低计算复杂度。而KNN作为分类器是一种懒惰学习方法,具有简单易实现的优点,但在大规模数据上可能效率较低。


最终的结果取决于草蝉优化算法的性能、特征选择和KNN分类器的调优以及数据集本身的特性。因此,在实际应用中,可能需要进行多次实验和优化,以选择最合适的特征子集和分类器参数。同时,建议参考相关研究论文和文献,以获得更深入的了解和具体实现细节。


📚2 运行结果


主函数部分代码:

close all
clear
clc
addpath(genpath(cd))
%% load the data
% load winedata.mat
load breast-cancer-wisconsin
% load ionosphere
% load Parliment1984
% load heartdata
load lymphography
%%
% preprocess data to remove Nan entries
for ii=1:size(Tdata,2)
    nanindex=isnan(Tdata(:,ii));
    Tdata(nanindex,:)=[];
end
labels=Tdata(:,end);                  %classes
attributesData=Tdata(:,1:end-1);      %wine data
% for ii=1:size(attributesData,2)       %normalize the data
%     attributesData(:,ii)=normalize(attributesData(:,ii));
% end
[rows,colms]=size(attributesData);  %size of data    
%% seprate the data into training and testing
[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
trainData=attributesData(trainIdx,:);   %training data
testData=attributesData(testIdx,:);     %testing data
trainlabel=labels(trainIdx);            %training labels
testlabel=labels(testIdx);              %testing labels
%% KNN classification
Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);
predictedLables_KNN=predict(Mdl,testData);
cp=classperf(testlabel,predictedLables_KNN);
err=cp.ErrorRate;
accuracy=cp.CorrectRate;
%% SA optimisation for feature selection
dim=size(attributesData,2);
lb=0;ub=1;
x0=round(rand(1,dim));
fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);
options = optimoptions(@simulannealbnd,'MaxIterations',150,...
            'PlotFcn','saplotbestf');
[x,fval,exitflag,output]  = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;
Target_pos_SA=round(x);
% final evaluation for GOA tuned selected features
[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...
                                                                   trainlabel,testlabel);
%% GOA optimisation for feature selection
SearchAgents_no=10; % Number of search agents
Max_iteration=100; % Maximum numbef of iterations
[Target_score,Target_pos,GOA_cg_curve, Trajectories,fitness_history,...
          position_history]=binaryGOA(SearchAgents_no,Max_iteration,lb,ub,dim,...
                                            trainData,testData,trainlabel,testlabel);
% final evaluation for GOA tuned selected features
[error_GOA,accuracy_GOA,predictedLables_GOA]=finalEval(Target_pos,trainData,testData,trainlabel,testlabel);                                                               
%%
% plot for Predicted classes
figure
plot(testlabel,'s','LineWidth',1,'MarkerSize',12)
hold on
plot(predictedLables_KNN,'o','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_GOA,'x','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_SA,'^','LineWidth',1,'MarkerSize',6)
% hold on
% plot(predictedLables,'.','LineWidth',1,'MarkerSize',3)
legend('Original Labels','Predicted by All','Predcited by GOA Tuned',...          
                                 'Predcited by SA Tuned','Location','best')
title('Output Label comparison of testing Data')
xlabel('-->No of test points')
ylabel('Test Data Labels' )
axis tight
% pie chart for accuracy corresponding to number of features
figure
subplot(1,2,1)
labels={num2str(size(testData,2)),num2str(numel(find(Target_pos))),...
                                      num2str(numel(find(Target_pos_SA)))};
pie([(size(testData,2)),numel(find(Target_pos)),numel(find(Target_pos_SA))],labels)
title('Number of features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                    'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
subplot(1,2,2)
labels={num2str(accuracy*100),num2str(accuracy_GOA*100),num2str(accuracy_SA*100)};
pie([accuracy,accuracy_GOA,accuracy_SA].*100,labels)                                                        
title('Accuracy for features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                       'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')


🎉3 参考文献

[1]张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008(03):170-172.

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
19天前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
20天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
49 1
|
28天前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
8天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
17天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
8天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。