【python-Unet】舌面裂纹自动分析-计算机视觉(七)

简介: 【python-Unet】舌面裂纹自动分析-计算机视觉(七)

此方法的具体细节与舌体分割类似,只是所用到的数据集不同!代码参照:【python-Unet】计算机视觉 舌象舌头图片分割 机器学习(三)


舌裂,即舌面裂纹。在中医诊断中健康人群的舌面看起来比较光滑,而舌体上出现各式各样的裂纹往往预示着患有一些疾病。舌裂的提取非常困难,舌面上的裂纹色值与普通舌面差别并不大,并且用户使用移动设备而非专业的舌象采集设备,机器识别细小的裂纹非常困难。中e诊基于使用U-Net网络分割的舌体图像,再次使用U-Net网络对舌面的裂纹进行提取。

舌裂纹提取基于PyTorch框架,利用Python编写。首先根据标注数据在数据集中寻找出近200张舌裂患者的图像数据,使用Photoshop进行标注。标注示例图如下:


进行标注后利用PyTorch框架构建U-Net模型抓取舌象图像特征,预测舌象图像标签。为对模型进行评价,在训练中计算每次循环的平均损失率。由于舌裂像素点少,故预测需要非常准确,最终每张图的损失了约为0.5%左右。

训练共历时5天,共200张标记图像,最终平均预测损失率约为0.5%。模型预测,即舌裂纹提取的效果理想,在此展示损失率为0.5%时的舌裂纹提取结果示例,示例如下图所示:

根据提取出的舌裂纹的像素点的多少,中e诊可判断用户是否具有大面积的舌裂纹,由此可为用户的体质分类做铺垫。

相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
87 4
|
15天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
109 70
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
17天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
13天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
91 36
|
7天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
47 15
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
66 18
|
20天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
34 8
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
1月前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定