模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)

简介: 模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)

💥1 概述

针对Stevens和Lewis描述的小型飞机纵向动力学的非线性动态,研究非线性动态反演控制器可以是一个有趣的课题。动态反演控制器的目标是通过了解系统的动力学方程和状态信息,从而在实时中实现对系统的反演和控制。


下面是研究步骤:


1. 系统建模:首先,你需要建立小型飞机的纵向动力学模型。这可能包括纵向运动方程、气动力模型以及控制效应模型等。这些方程需要考虑飞行器的质量、惯性、空气动力学特性等因素。你可以参考Stevens和Lewis的工作以及其他相关文献,以获取合适的模型。


2. 系统特性分析:在完成系统建模后,你可以进行系统特性分析。使用非线性系统理论,分析系统的稳定性、可控性和可观测性等特性。这些分析将有助于理解系统行为和设计控制器。


3. 动态反演控制器设计:基于系统的动力学方程和特性分析结果,设计动态反演控制器。动态反演控制器的目标是通过在线估计系统未知参数和外部扰动,实时计算出对应的控制指令。这种控制器的优势在于对系统参数变化和未建模动态的鲁棒性。


4. 仿真与验证:实施动态反演控制器,并使用仿真工具模拟小型飞机的纵向运动。通过输入一组初始条件和控制指令,在仿真环境中进行验证和评估控制器的性能。可以使用 MATLAB、Simulink 或其他仿真软件来进行此步骤。


5. 实际实验:如果仿真结果令人满意,可以考虑在实际小型飞机上实施该控制器,并进行飞行试验。在实验中收集数据,并与仿真结果进行比较和分析,以验证控制器的有效性。


需要注意的是,小型飞机的纵向动力学是一个复杂的问题,需要掌握相关的飞行器动力学和控制理论知识。同时,确保你对动态反演控制器的基本原理和设计方法有充分的了解。


📚2 运行结果

部分代码:

%% COMMAND INPUT
r=1;        % Reference C* demand
rdot=0;     % Reference rate
% Outputs
nz=(LIFT*cos(ALPHA)+DRAG*sin(ALPHA))/(G*MASS)-cos(THETA); % Normal acceleration [eq (2)]
nzp=nz+15*MOM/(G*IYY);  % Normal acceleration at pilot's station [eq (3)]
cstar=nzp+12.4*Q;       % Controlled C* variable [eq(4)]
y=cstar;                % Output y=h(x)
%% DYNAMIC INVERSION CONTROL INPUT
e=r-y;                          % error
Fctrl=dhdx*f;                   % F(x)
Gctrl=dhdx*g;                   % G(x)
K=10;                           % Linear control gain
uelev=(-Fctrl+rdot+K*e)/Gctrl;  % Control
%% Model State Equations
xdot=zeros(5,1);
xdot(1)=(FT*cos(ALPHA)-DRAG-WEIGHT*sin(GAMMA))/MASS;        % Airspeed rate
xdot(2)=(-FT*sin(ALPHA)-LIFT+WEIGHT*cos(GAMMA))/(MASS*VT)+Q;% AoA rate
xdot(3)=Q;                          % Pitch rate
xdot(4)=MOM/IYY;                    % Pitch acceleration
xdot(5)=-20.2*EL+20.2*uelev;        % Elevator rate

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]B.L. Steven & F.L. Lewis (2003) “Aircraft Flight Control & Simulation”, John Wiley (edition 2)


🌈4 Matlab代码实现

目录
打赏
0
0
0
0
78
分享
相关文章
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
根据空域图信息构造飞机航线图以及飞行轨迹模拟matlab仿真
本程序基于MATLAB2022A实现空域图信息的飞机航线图构建与飞行轨迹模拟。空域图是航空领域的重要工具,包含航线、导航点、飞行高度层等信息。程序通过航路网络建模(节点为机场/导航点,边为航线段)构建航线图,并依据飞行规则规划航线。飞行轨迹模拟包括确定起飞点与目的地、设置航路点及飞行高度层,确保飞行安全。完整程序运行结果无水印,适用于航空飞行计划制定与研究。
110 16
基于PID控制器的双容控制系统matlab仿真
本课题基于MATLAB2022a实现双容水箱PID控制系统的仿真,通过PID控制器调整泵流量以维持下游水箱液位稳定。系统输出包括水位和流量两个指标,仿真结果无水印。核心程序绘制了水位和流量随时间变化的图形,并设置了硬约束上限和稳态线。双容水箱系统使用一阶线性微分方程组建模,PID控制器结合比例、积分、微分作用,动态调整泵的输出流量,使液位接近设定值。
|
5月前
|
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
224 18
通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器
本课题通过MATLAB实现PID控制器、积分分离控制器和滑模控制器,对比结果显示滑模控制具有最快的收敛性能、较强的鲁棒性和较小的超调量,优于其他两种控制器。系统仿真结果无水印,核心程序基于MATLAB 2022a。PID控制器由P、I、D单元组成,积分分离PI在大误差时不进行积分,减少超调;滑模控制通过设计滑动面使系统快速收敛,抑制扰动。
基于FOC控制器的BLDC无刷直流电机控制系统matlab编程与仿真
本课题基于MATLAB编程实现BLDC无刷直流电机的FOC控制系统,涵盖FOC控制器、Clarke和Park变换等,不使用Simulink建模。系统通过坐标变换将三相电流转换到dq轴,独立控制励磁和转矩电流,实现高效平滑运行及高动态响应。仿真输出包括三相电流、电机转速和转子角度。版本:MATLAB2022a。
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
188 12
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
575 15

热门文章

最新文章

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问