基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)

简介: 基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)

💥1 概述

文献来源:

摘要:准确估计电力系统动态对于提高电力系统的可靠性、韧性、安全性和稳定性非常重要。随着逆变器型分布式能源的不断集成,对电力系统动态的了解比以往任何时候都更为必要和关键,以实现电力系统的正确控制和运行。尽管最近测量设备和传输技术的进展极大地减小了测量和传输误差,但这些测量仍然不完全摆脱测量噪声的影响。因此,需要对嘈杂的测量进行滤波,以获得准确的电力系统运行动态。本文使用扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)来估计电力系统的动态状态。我们对西部电力协调委员会(WECC)的3机9节点系统和新英格兰的10机39母线系统进行了案例研究。结果表明,UKF和EKF能够准确地估计电力系统的动态。本文还提供了对测试案例的EKF和UKF的比较性能。其他基于卡尔曼滤波技术和机器学习的估计器的信息将很快在本报告中更新。


关键词:扩展卡尔曼滤波(EKF)、电力系统动态状态估计、无迹卡尔曼滤波(UKF)。


原文摘要:


Abstract—Accurate estimation of power system dynamics is very important for the enhancement of power system relia-bility, resilience, security, and stability of power system. With the increasing integration of inverter-based distributed energy resources, the knowledge of power system dynamics has become more necessary and critical than ever before for proper control and operation of the power system. Although recent advancement of measurement devices and the transmission technologies have reduced the measurement and transmission error significantly, these measurements are still not completely free from the mea- surement noises. Therefore, the noisy measurements need to be filtered to obtain the accurate power system operating dynamics. In this work, the power system dynamic states are estimated using extended Kalman filter (EKF) and unscented Kalman filter (UKF). We have performed case studies on Western Electricity Coordinating Council (WECC)’s 3-machine 9-bus system and New England 10-machine 39-bus. The results show that the UKF and EKF can accurately estimate the power system dynamics. The comparative performance of EKF and UKF for the tested case is also provided. Other Kalman filtering techniques along

with the machine learning based estimator will be updated in this report soon. All the sources code including Newton Raphson power flow, admittance matrix calculation, EKF calculation, and

UKF calculation are publicly available in Github on Power System Dynamic State Estimation.

Index Terms—Extended Kalman filter (EKF), power system dynamic state estimation, and unscented Kalman filter (UKF).


📚2 运行结果

2.1 UKF

2.2 EKF

部分代码:

% Covariance Matrix
sig=1e-2; 
P=sig^2*eye(ns);  % Error covariance matrix 
Q=sig^2*eye(ns); % system noise covariance matrix 
R=sig^2*eye(nm); % measurment noise covariance matrix 
X_hat=X_0;
X_est=[]; 
X_mes=[]; % Initial statel 
% constant values 
RMSE=[];
%Extended Kalman Filter (EKF) ALgorithm 
for k=0:deltt:t_max
    % Ybus and reconstruction matrix accodring to the requirement
    if k<t_SW
        ps=1;
    elseif (t_SW<k)&&(k<=t_FC)
        ps=2;  
    else 
        ps=3; 
    end  
    Ybusm = YBUS(:,:,ps);
    RVm=RV(:, :, ps);
    [~, X] = ode45(@(t,x) dynamic_system(t,x,M,D,Ybusm,E_abs,PM,n),[k k+deltt],X_0);
    X_0=transpose(X(end, :));
    X_mes=[X_mes X_0];
    %determine the measurements 
    E1=E_abs.*exp(1j*X_0(1:n)); 
    I1=Ybusm*E1; 
    PG=real(E1.*conj(I1)); 
    QG=imag(E1.*conj(I1)); 
    Vmag=abs(RVm*E1); 
    Vangle=angle(RVm*E1); 
    z=[PG; QG; Vmag; Vangle]; 
    % determine Phi=df/fx 
    Phi=RK4partial(E_abs, X_hat, Ybusm, M, deltt, D, n);
    %prediction 
%     [~, X1]= ode45(@(t,x) dynamic_system(t,x,M,D,Ybusm,E_abs,PM,n),[k k+deltt],X_hat);
%     X_hat=transpose(X1(end, :));
    X_hat=RK4(n, deltt, E_abs, ns, X_hat, PM, M, D, Ybusm); 
    P=Phi*P*transpose(Phi)+Q;
    % correction 
    [H, zhat]=RK4H(E_abs, X_hat, Ybusm, s,n, RVm) ; 
    % Measurement update of state estimate and estimation error covariance 
    K=P*transpose(H)*(H*P*transpose(H)+R);
    X_hat=X_hat+K*(z-zhat); 
    P=(eye(ns)-K*H)*P; 
    X_est=[X_est, X_hat];  
    RMSE=[RMSE, sqrt(trace(P))];
end 
save('39_RMSE_EKF.mat', 'RMSE')
%% Plots
t= (0:deltt:t_max);
for i=1:1:n
figure(i)
subplot(2,1,1)
plot(t,X_mes(i, :), 'linewidth', 1.5)
hold on 
plot(t, X_est(i, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
grid on
ylabel(sprintf('Angle_{%d}', i), 'fontsize', 12)
xlabel('time(s)', 'fontsize', 15); 
title('Actual Vs Estimated \delta', 'fontsize', 12)
legend(sprintf('Angle_{%d, Actual} ',i), sprintf('Angle_{%d, EKF}', i)); 
subplot(2,1,2)
plot(t,X_mes(i+n, :), 'linewidth', 1.5)
hold on 
plot(t, X_est(i+n, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
grid on
ylabel(sprintf('Speed_{%d}', i), 'fontsize', 12)
xlabel('time(s)', 'fontsize', 15); 
title('Actual Vs Estimated \omega', 'fontsize', 12)
legend(sprintf('Speed_{%d, Actual} ',i), sprintf('Speed_{%d, EKF}', i));
% subplot(2,2,3)
% plot(t,X_mes(i+1, :), 'linewidth', 1.5)
% hold on 
% plot(t, X_est(i+1, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
% grid on
% ylabel(sprintf('Angle_{%d}', i+1), 'fontsize', 12)
% xlabel('time(s)', 'fontsize', 15); 
% title('Measured Vs Eistimated \delta', 'fontsize', 12)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现


相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
106 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章