一种用于RBF神经网络的新型自适应内核研究(Matlab代码实现)

简介: 一种用于RBF神经网络的新型自适应内核研究(Matlab代码实现)

💥1 概述

在本文中,我们提出了一种新的径向基函数神经网络自适应核。所提出的核自适应地融合了欧几里得和余弦距离测度,以利用两者的往复性质。该框架使用梯度下降法动态调整参与核的权重,从而减轻了对预定权重的需求。结果表明,所提方法在非线性系统辨识、模式分类和函数逼近3个主要估计问题上优于人工核融合。


RBF 神经网络在许多实际感兴趣的问题上表现出优异的性能。在[24]中,使用具有遗传算法的RBF神经网络分析盐水储层的物理化学特性。所提出的模型称为GA-RBF模型,与以前的方法相比,它显示出良好的结果。在[12]中,RBF核用于高精度地预测压力梯度。在核物理的背景下,RBF已被有效地用于模拟材料的停止功率数据,如[15]。有关各种应用的全面讨论,请参见[6]。


近年来,该领域取得了相当大的进展。在[23]中,提出了几种新的RBF构造算法,目的是用更少的计算节点提高误差收敛率。第一种方法通过添加Nelder-Mead单纯形优化来扩展流行的增量极限学习机算法。第二种算法使用Levenberg-Marquardt算法来优化RBF的位置和高度。与之前的研究相比,结果显示出更好的错误性能。在[19]中,借助模糊聚类和数据预处理技术,开发了优化的RBF神经网络分类器的新架构。在[7]中,一种称为cOptBees的蜜蜂启发算法已被与启发式算法一起使用,以自动选择要在RBF网络中使用的基函数的数量,位置和分散度。由此产生的BeeRBF被证明具有竞争力,并具有自动确定中心数量的优势。为了加速大规模数据序列的学习,[2]提出了一种增量学习算法。模糊聚类和清晰聚类的优点在[18]中得到了有效的结合。


在[5]中,提出了基于正交最小二乘的替代学习过程。在算法中,以合理的方式逐个选择RBF的中心,直到构建出足够的网络。在[10]中,提出了一种具有多核的新型RBF网络,以获得优化且灵活的回归模型。多核的未知中心由改进的 k 均值聚类算法确定。使用正交最小二乘 (OLS) 算法来确定其余参数。[13]中提出的另一种学习算法通过使用自适应计算算法(ACA)简化了神经网络训练。ACA的收敛性通过李雅普诺夫准则进行分析。在[3]中,提出了一个顺序框架元认知径向基函数网络(McRBFN)及其基于投影的学习(PBL),称为PBL-McRBFN。PBL-McRBFN的灵感来自人类元认知学习原理。该算法基于两个实际问题进行评估,即声发射信号分类和用于癌症分类的乳房X光检查。在[4]中,提出了一种基于神经网络的非参数监督分类器,称为自适应增长神经网络(SAGNN)。SAGNN 允许神经网络根据训练数据调整其大小和结构。评估了该方法的性能以进行故障诊断,并与各种非参数监督神经网络进行了比较。[26]中提出了一种混合优化策略,通过将粒子群优化(PSO)的自适应优化整合到名为HPSOGA的遗传算法(GA)中。该策略用于自动确定径向基函数神经网络的参数(例如,神经元的数量及其各自的中心和半径)。


详细文章讲解见第4部分。


📚2 运行结果

部分代码:

%% Initialization of the simulation parameters
len = 1000;     % Length of the signal 
runs = 10;      % Monte Carlo simulations
epochs = 100;   % Number of times same signal pass through the RBF 
learning_rate = 5e-4;   % step-size of Gradient Descent Algorithm
noise_var=1e-1;         % disturbance power / noise in desired outcome
h = [2 -0.5 -0.1 -0.7 3]; % system's coeffients
delays = 2;               % order/delay/No.of.Taps
% input signal is a noisy square wave
x=[-1*ones(1,delays) ones(1,round(len/4)) -ones(1,round(len/4)) ones(1,round(len/4)) -ones(1,round(len/4))];
x=awgn(x,20); % addition of noise in square wave signal
c = [-5:2:5];   % Gaussian Kernel's centers
n1=length(c);   % Number of neurons
beeta=1;        % Spread of Gaussian Kernels
MSE_epoch=0;    % Mean square error (MSE) per epoch   
MSE_train=0;    % MSE after #runs of Monte Carlo simulations
epoch_W1    =   0; % To store final weights after an epoch
epoch_b     =   0; % To store final bias after an epoch
%% Training Phase
for run=1:runs
    % Random initialization of the RBF weights/bias
    W1  = randn(1,n1);
    b   = randn();
    for k=1:epochs
        for i1=1:len
            % Calculating the kernel matrix
            for i2=1:n1
                % Euclidean Distance / Gaussian Kernel
                ED(i1,i2)=exp((-(norm(x(i1)-c(i2))^2))/beeta^2);
            end
            % Output of the RBF
            y(i1)=W1*ED(i1,:)'+b;
            % Desired output + noise/disturbance of measurement
            d(i1)= h(1)*x(i1+2) +h(2)*x(i1+1)+h(3)*x(i1)+h(4)*(cos(h(5)*x(i1+2)) +exp(-abs(x(i1+2))))+sqrt(noise_var)*randn();
            % Instantaneous error of estimation
            e(i1)=d(i1)-y(i1);
            % Gradient Descent-based adaptive learning (Training)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1] Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7


🌈4 Matlab代码实现

相关文章
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
208 80
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
125 10
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
3月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

热门文章

最新文章