【Python】利用tkinter与图灵机器人制作智能聊天系统

简介: 【Python】利用tkinter与图灵机器人制作智能聊天系统

1 前言


一次偶然的机会,我了解到图灵机器人网站,里面有现成的智能机器人聊天API。正好当时在学tkinter,计划利用tkinter制作一个类似QQ聊天框,与机器人聊天~

具体效果如下(ps:由于在网站的免费额度用完了,这里返回的是“请求次数超限制”):

图灵机器人网站链接:图灵机器人网站

首先需要注册登录,然后点击下图中的“创建机器人”,根据自己的需要创建~

创建完成后,会出现创建数据,其中有apikey!


2 代码分模块讲解


2.1 导入相应的库


首先需要导入相应的库,涉及到tkinter、datetime、time、requests、json等~


from tkinter import *
import datetime
import time
import requests,json
from tkinter import scrolledtext

2.2 创建机器人对象


机器人对象实际上是通过request请求访问图灵机器人API!

def computer(self, inquant):
        userid = 99        #检查一下自己的userid
        apikey = ''        #这里输入自己的apikey
        startup = ''
        while True:
            question = inquant
            tulingdata1 = json.dumps({
                "perception": {
                    "inputText": {
                        "text": question  # 将你输入的对话封装成一个字典,再转换成字符串,传给图灵机器人语义系统
                    },
                },
                "userInfo": {
                    "apiKey": apikey,  # 与图灵语义系统联系
                    "userId": userid
                }
            })
            robot1 = requests.post('http://openapi.tuling123.com/openapi/api/v2', tulingdata1)  # 因为是人机对话,所以通过post传递信息
            jsrobot1 = json.loads(robot1.text)['results'][0]['values']['text']  # 返回图灵机器人的对话
            return jsrobot1+'\n'

2.3 创建信息交互过程对象


这里实际上是将发送信息与接收信息的过程进行封装,方便之后的调用。同时使用了时间库,使聊天更加的真实!

def sendmessage(self, text_msglist, text_msg):
        msgcontent = '我:' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + '\n '
        text_msglist.insert(END, msgcontent, 'green')
        text_msglist.insert(END, text_msg.get('0.0', END))
        computertent = '图灵机器人:' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + '\n '
        text_msglist.insert(END, computertent, 'green')
        computer_talk = text_msg.get('0.0', END)
        text_msglist.insert(END, (self.computer(computer_talk)))
        text_msg.delete('0.0', END)


2.4 页面创建对象


通过grid来布局tkinter组件使页面更加的美观

def createPage(self):
        self.frame_left_top = Frame(width=600, height=220, bg='white')
        self.frame_left_center = Frame(width=600, height=100, bg='white')
        self.frame_left_bottom = Frame(width=600, height=20)
        ##创建需要的几个元素
        text_msglist = scrolledtext.ScrolledText(self.frame_left_top)
        text_msg = Text(self.frame_left_center)
        button_sendmsg = Button(self.frame_left_bottom, text='发送', command=lambda: self.sendmessage(text_msglist, text_msg))
        # 创建一个绿色的tag
        text_msglist.tag_config('green', foreground='#008B00')
        # 使用grid设置各个容器位置
        self.frame_left_top.grid(row=0, column=0, padx=2, pady=5)
        self.frame_left_center.grid(row=1, pady=5)
        self.frame_left_bottom.grid(row=2, column=0)
        self.frame_left_top.grid_propagate(0)
        self.frame_left_center.grid_propagate(0)
        self.frame_left_bottom.grid_propagate(0)
        # 把元素填充进frame
        text_msglist.grid()
        text_msg.grid()
        button_sendmsg.grid(row=0, column=0, sticky=E)

3 整体代码展示(可直接使用!)


ps:在computer函数中,将改换的换成自己的!

from tkinter import *
import datetime
import time
import requests,json
from tkinter import scrolledtext
class talk(object):
    def __init__(self, master=None):
        self.root = master  # 定义内部变量root
        self.createPage()
    def computer(self, inquant):
        userid = 99
        apikey = ''   #换成自己的apikey
        startup = ''
        while True:
            question = inquant
            tulingdata1 = json.dumps({
                "perception": {
                    "inputText": {
                        "text": question  # 将你输入的对话封装成一个字典,再转换成字符串,传给图灵机器人语义系统
                    },
                },
                "userInfo": {
                    "apiKey": apikey,  # 与图灵语义系统联系
                    "userId": userid
                }
            })
            robot1 = requests.post('http://openapi.tuling123.com/openapi/api/v2', tulingdata1)  # 因为是人机对话,所以通过post传递信息
            jsrobot1 = json.loads(robot1.text)['results'][0]['values']['text']  # 返回图灵机器人的对话
            return jsrobot1+'\n'
    def sendmessage(self, text_msglist, text_msg):
        msgcontent = '我:' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + '\n '
        text_msglist.insert(END, msgcontent, 'green')
        text_msglist.insert(END, text_msg.get('0.0', END))
        computertent = '图灵机器人:' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + '\n '
        text_msglist.insert(END, computertent, 'green')
        computer_talk = text_msg.get('0.0', END)
        text_msglist.insert(END, (self.computer(computer_talk)))
        text_msg.delete('0.0', END)
    def createPage(self):
        self.frame_left_top = Frame(width=600, height=220, bg='white')
        self.frame_left_center = Frame(width=600, height=100, bg='white')
        self.frame_left_bottom = Frame(width=600, height=20)
        ##创建需要的几个元素
        text_msglist = scrolledtext.ScrolledText(self.frame_left_top)
        text_msg = Text(self.frame_left_center)
        button_sendmsg = Button(self.frame_left_bottom, text='发送', command=lambda: self.sendmessage(text_msglist, text_msg))
        # 创建一个绿色的tag
        text_msglist.tag_config('green', foreground='#008B00')
        # 使用grid设置各个容器位置
        self.frame_left_top.grid(row=0, column=0, padx=2, pady=5)
        self.frame_left_center.grid(row=1, pady=5)
        self.frame_left_bottom.grid(row=2, column=0)
        self.frame_left_top.grid_propagate(0)
        self.frame_left_center.grid_propagate(0)
        self.frame_left_bottom.grid_propagate(0)
        # 把元素填充进frame
        text_msglist.grid()
        text_msg.grid()
        button_sendmsg.grid(row=0, column=0, sticky=E)
if __name__ == "__main__":
    root = Tk()
    root.title('图灵机器人聊天')
    talk(root)
    root.mainloop()

最后再次展示一下界面图:

相关文章
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
99 59
|
10天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
15 5
|
5天前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
31 9
|
3天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
13 2
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
15 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
10 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
33 6
|
5天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
18 2
|
10天前
|
机器学习/深度学习 供应链 安全
使用Python实现智能食品供应链管理的深度学习模型
使用Python实现智能食品供应链管理的深度学习模型
40 3