HarmonyOS学习路之开发篇—AI功能开发(实体识别)

简介: 实体识别能够从自然语言中提取出具有特定意义的实体,并在此基础上完成搜索等一系列相关操作及功能。

实体识别概述

实体识别能够从自然语言中提取出具有特定意义的实体,并在此基础上完成搜索等一系列相关操作及功能。


实体识别覆盖范围大,能够满足日常开发中对实体识别的需求,让应用体验更好。识别准确率高,能够准确地提取到实体信息,对应用基于信息的后续服务形成关键影响。


约束限制

当前只支持中文语境。

实体识别文本限制在500个字符以内,超过字符数限制将返回参数错误;文本需要为UTF-8格式,格式错误不报错,但会导致分析结果错误。

Engine支持多用户同时接入,但是不支持同一用户并发调用同一个特性,如同一个特性被同一进程同一时间多次调用,则返回系统忙错误;不同进程调用同一特性,则同一时间只处理一个进程的业务,其他进程进入队列排队。

实体识别开发

场景介绍

双指按压文本弹出卡片

基于文本中所包含的实体内容,如名人、电影、电视剧等。通过双指按压,快速弹出实体对应的卡片介绍信息。让用户可以方便、快捷的获取想知道的信息。


实体信息高亮

将相关的实体信息高亮,并设置快速操作入口。如将文本信息中的电话号码高亮,用户可以直接进行拨号。


接口说明

实体识别提供识别文本中具有特定意义实体的能力,包含电影、电视剧、综艺、动漫、单曲、专辑、图书、火车车次、航班号、球队、人名、快递单号、电话号码、url、邮箱、联赛、时间、地点(包含酒店、餐馆、景点、学校、道路、省、市、县、区、镇等)、验证码。


主要接口


image.png

image.png接口输入值说明

requestType表示请求类型,通过NluRequestType类定义如下:

枚举的类型

枚举的取值

static final int

REQUEST_TYPE_LOCAL = 0 本地请求

requestData的JSON格式如下:

image.png

接口返回值说明


返回值ResponseResult为JSONObject字符串,体现实体识别的结果:

image.png



开发步骤

在使用实体识别相关接口时,需要将实体识别的相关类添加到工程。


import ohos.ai.nlu.ResponseResult; // 接口返回的结果类
import ohos.ai.nlu.NluClient; // 接口服务类
import ohos.ai.nlu.NluRequestType; // 接口调用时传入的类型
import ohos.ai.nlu.OnResultListener; // 异步函数,执行成功的回调结果类
import ohos.ai.nlu.util.NluError;// 接口返回码

使用NluClient静态类进行初始化,通过异步方式获取服务的连接。


context:应用上下文信息,应为ohos.aafwk.ability.Ability或ohos.aafwk.ability.AbilitySlice的实例或子类实例。

listener:初始化结果的回调,可以传null。

isLoadModel:是否加载模型,如果传true,则在初始化时加载模型;如果传false,则在初始化时不加载模型。

NluClient.getInstance().init(context, new OnResultListener<Integer>(){
        @Override
        public void onResult(Integer result){
         // 初始化成功回调,在服务初始化成功调用该函数
        }
}, true);

调用实体识别的接口,获取分析结果。


采用同步方式进行实体识别:

String requestData= "{text:'我要看电影魔兽',module:'movie'}"; // module为可选参数,如果不设置该参数,则默认分析所有实体
ResponseResult respResult = NluClient.getInstance().getEntity(requestData, NluRequestType.REQUEST_TYPE_LOCAL);
if (null != respResult && NluError.SUCCESS_RESULT == respResult.getCode()) {
    // 获取接口返回结果,参考接口文档返回使用
    String result = respResult.getResponseResult();
}

采用异步方式进行实体识别:

// 待分析文本
String requestData= "{text:'我要看电影魔兽',module:'movie'}"; // module为可选参数,如果不设置该参数,则默认分析所有实体
// 调用接口
NluClient.getInstance().getEntity(requestData, NluRequestType.REQUEST_TYPE_LOCAL, new OnResultListener < ResponseResult > () {
    @Override
    public void onResult(ResponseResult respResult) {
        // 异步返回
        if (null != respResult && NluError.SUCCESS_RESULT == respResult.getCode()) {
            // 获取接口返回结果,参考接口文档返回使用
            String result = respResult.getResponseResult();
        }
    }
});

销毁NLU服务。

NluClient.getInstance().destroy();


相关文章
|
8天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
8天前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
32 3
|
13天前
|
人工智能 小程序
【一步步开发AI运动小程序】五、帧图像人体识别
随着AI技术的发展,阿里体育等公司推出的AI运动APP,如“乐动力”和“天天跳绳”,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章分为四部分:初始化人体识别功能、调用人体识别功能、人体识别结果处理以及识别结果旋转矫正。下篇将继续介绍人体骨骼图绘制。
|
13天前
|
缓存 前端开发 API
鸿蒙应用开发:下载功能
鸿蒙应用开发:下载功能
35 1
|
14天前
|
人工智能 小程序 vr&ar
AI运动小程序开发常见问题集锦二
截至当前,我们的AI运动识别小程序插件已迭代至第23个版本,广泛应用于健身、体育、体测、AR互动等场景。本文针对近期用户咨询,汇总了常见问题,帮助用户减少开发成本,提高效率。主要涵盖计时与计数模式的区别、综合排行榜生成方法、全屏模式适配及无开发能力用户的解决方案。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
19 1
|
4天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
24 10
|
4天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。