网络原理数据链路层

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 网络原理数据链路层

嘿嘿,又见面了,今天为大家带来数据链路层的相关知识.这个层面的知识离咱们程序员太遥远了,我们简单介绍一下就行

1.以太网

2.认识Mac地址


3.区分Mac地址和IP地址

4.MTU

5.DNS

1.以太网

以太网是数据链路层和物理层的使用的网络,物理层用的不咋多,我们就先不讲了,直接看数据链路层的以太网,之前已经在数据传输的时候认识过了.我们再来回顾一下以太网数据帧

这里纠正一个错误:

以太网数据帧当中目的地址在源地址前面,在之前的数据传输博客里我画错了,请大家见谅见谅哈哈哈

CRC就是校验和

IP数据报所在的那一行是用来传输数据的以太网帧

1500的意思是:一个以太网数据帧,载荷最大长度就是1500(是因为硬件的限制),不同的设备的数据链路层协议对应不同的硬件设备,载荷长度也就不一样


2.Mac地址

Mac地址是6个字节的,每一台主机对应唯一的Mac地址,Mac地址不需要动态分配,当前够用

3.区分IP地址和Mac地址

🐷一、地址长度的不同

1、MAC地址的长度为48位(6个字节),通常表示为12个16进制数,每2个16进制数之间用冒号隔开,如:00:50:29:5A:8H:1E就是一个MAC地址。


2、IP地址为32位,由用点分隔开的4个8八位组构成,如192.168.0.1就是一个IP地址,这种写法叫点分十进制格式。

🐷二、所在寻址协议层上的区别


1、MAC地址应用在OSI第二层,即数据链路层。数据链路层协议可以使数据从一个节点传递到相同链路的另一个节点上(通过MAC地址)。


2、IP地址应用于OSI第三层,即网络层。网络层协议使数据可以从一个网络传递到另一个网络上(ARP根据目的IP地址,找到中间节点的MAC地址,通过中间节点传送,从而最终到达目的网络)。


🐷三、 分配依据不同。


1、MAC地址的分配是基于制造商。


MAC地址由网络设备制造商生产时写在硬件内部。这个地址与网络无关,也即无论将带有这个地址的硬件(如集线器、网卡、路由器等)接入到网络的何处,它都有相同的MAC地址,是不可变的。


2、IP地址的分配是基于网络拓朴。


IP地址由网络地址和主机地址两部分组成,分配给这两部分的位数随地址类(A类、B类、C类等)的不同而不同。


Mac地址一旦确定就不会变了,但是IP地址会随着路径的变化而变化


4.MTU

把数据链路层数据帧的最大载荷长度,称为MTU.

如果数据长度超过MTU,那么在IP层就进行分包,让分出来的每个包的长度都在MTU之内

16位标识符:一个大的IP数据报被拆分成多个小的数据报,这些包的标识都是相同的

3位标志:有一位不用,有一位表示是否分包了,有一位表示当前这个包是否是分包的最后一个(结束标志)

13位片偏移:表示每个小的数据报之间的到达顺序,用来组包

注意,只有以太网下的MTU才是1500,不同数据链路层协议的MTU不同!!!


5.DNS

🐷功能

每个IP地址都可以有一个主机名,主机名由一个或多个字符串组成,字符串之间用小数点隔开。有了主机名,就不要死记硬背每台IP设备的IP地址,只要记住相对直观有意义的主机名就行了。这就是DNS协议所要完成的功能。

主机名到IP地址的映射有两种方式:

1)静态映射,每台设备上都配置主机到IP地址的映射,各设备独立维护自己的映射表,而且只供本设备使用;

2)动态映射,建立一套域名解析系统(DNS),只在专门的DNS服务器上配置主机到IP地址的映射,网络上需要使用主机名通信的设备,首先需要到DNS服务器查询主机所对应的IP地址。


通过主机名,最终得到该主机名对应的IP地址的过程叫做域名解析(或主机名解析)。在解析域名时,可以首先采用静态域名解析的方法,如果静态域名解析不成功,再采用动态域名解析的方法。可以将一些常用的域名放入静态域名解析表中,这样可以大大提高域名解析效率。

🐷重要性

1、技术角度看


DNS解析是互联网绝大多数应用的实际寻址方式; 域名技术的再发展、以及基于域名技术的多种应用,丰富了互联网应用和协议。


2、资源角度看


域名是互联网上的身份标识,是不可重复的唯一标识资源; 互联网的全球化使得域名成为标识一国主权的国家战略资源。


🐷冗余

为保证服务的高可用性,DNS要求使

dns

dns

用多台名称服务器冗余支持每个区域。


某个区域的资源记录通过手动或自动方式更新到单个主名称服务器(称为主 DNS服务器)上,主 DNS 服务器可以是一个或几个区域的权威名称服务器。

常见顶级域名


常见域名有:.com、.cn、.top、.net、.org、.gov、.edu.等[1]


.com:表示商业机构


.cn:表示中国国家域名


.top:表示高端,顶级,事业突破,国际通用域名


.net:表示网络服务机构


.org:表示非营利性组织


.gov:表示政府机构


.edu:表示教育机构


今天的讲解就到这里了,我们下期再见,886!!!

90f3a1b35f5b47eba812888543b77cde.png

相关文章
|
1月前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
64 3
|
19天前
|
网络协议 网络安全 数据中心
|
14天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
31 3
|
25天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
1月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
95 1
|
1月前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
1月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
1月前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
25天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
1月前
|
网络协议 网络架构
【网络】TCP/IP 五层网络模型:数据链路层
【网络】TCP/IP 五层网络模型:数据链路层
49 1
下一篇
无影云桌面