如何基于 ACK Serverless 快速部署 AI 推理服务

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 如何基于 ACK Serverless 快速部署 AI 推理服务

作者:元毅

随着 AI 浪潮的到来,各种 AI 应用层出不穷,众所周知 AI 应用对 GPU 资源强烈依赖,但 GPU 很昂贵,如何降低 GPU 资源使用成本成为用户首要问题。而 AI 与 Serverless 技术结合,完全可以达到按需使用资源,降低资源成本的目的。


那么在云原生场景下,是否有这样开箱即用、标准、开放的方案呢?答案是有。我们在 ACK Serverless 中提供 Knative + KServe 的方案,可以帮助用户快速部署 AI 推理服务,按需使用,在无请求时支持 GPU 资源自动缩容到 0,大幅节省 AI 应用场景下资源使用成本。


关于 ACK Serverless


容器服务 Serverless 版 ACK Serverless 是一款基于阿里云弹性计算基础架构之上,同时完全兼容 Kubernetes 生态,安全、可靠的容器产品。通过 ACK Serverless,您无需管理和维护 k8s 集群即可快速创建 Kubernetes 容器应用,支持多种 GPU 资源规格,并且根据应用实际使用的资源量进行按需付费。



Knative 与 KServe


Knative 是一款基于 Kubernetes 之上的开源 Serverless 应用架构,提供基于请求的自动弹性、缩容到 0 以及灰度发布等功能。通过 Knative 部署 Serverless  应用可以做到专注于应用逻辑开发,资源按需使用。


而 KServe 提供了一个简单的 Kubernetes CRD,可以将单个或多个经过训练的模型部署到模型服务运行时,例如 TFServing、TorchServe、Triton 等推理服务器。这些模型服务运行时能够提供开箱即用的模型服务,KServe 提供基本 API 原语,让您轻松构建自定义模型服务运行时。基于 Knative 使用 InferenceService 部署推理模型后,您将获得以下 Serverless 能力:


  • 缩容到 0
  • 基于 RPS、并发数、CPU/GPU 指标自动弹性
  • 多版本管理
  • 流量管理
  • 安全认证
  • 开箱即用可观测性


KServe 模型服务控制面主要由 KServe Controller 负责,用于协调 InferenceService 自定义资源并创建 Knative Service 服务,可以实现根据请求流量实现自动缩放,以及在未收到流量时缩小到零。



基于 KServe 快速部署第一个推理服务


在本文中,我们将部署一个带有预测能力的 InferenceService 推理服务,该推理服务将使用 iris(鸢尾花)数据集训练的 scikit-learn 模型。该数据集具有三个输出类别:Iris Setosa(山鸢尾,索引:0)、Iris Versicolour(杂色鸢尾花,索引:1)和 Iris Virginica(弗吉尼亚鸢尾,索引:2)。最后您可以向部署的模型发送推理请求,以便预测对应的鸢尾植物类别。


前提条件

  • 已开通 ACK Serverless[1]
  • 部署 KServe[2]


当前阿里云 Knative 支持一键部署 KServe。支持 ASM、ALB、MSE 以及 Kourier 等网关能力。


创建 InferenceService 推理服务


kubectl apply -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  predictor:
    model:
      modelFormat:
        name: sklearn
      storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
EOF


检查服务状态:


kubectl get inferenceservices sklearn-iris


预期输出:


NAME           URL                                                         READY   PREV   LATEST   PREVROLLEDOUTREVISION   LATESTREADYREVISION                    AGE
sklearn-iris   http://sklearn-iris-predictor-default.default.example.com   True           100                              sklearn-iris-predictor-default-00001   51s


服务访问

1. 获取服务访问地址


$ kubectl get albconfig knative-internet
NAME               ALBID                    DNSNAME                                              PORT&PROTOCOL   CERTID   AGE
knative-internet   alb-hvd8nngl0lsdra15g0   alb-hvd8nngl0lsdra15g0.cn-beijing.alb.aliyuncs.com                            24m


2. 在文件中准备您的推理输入请求

iris 数据集是由三种鸢尾花,各 50 组数据构成的数据集。每个样本包含 4 个特征,分别为萼片(sepals)的长和宽、花瓣(petals)的长和宽。


cat <<EOF > "./iris-input.json"
{
  "instances": [
    [6.8,  2.8,  4.8,  1.4],
    [6.0,  3.4,  4.5,  1.6]
  ]
}
EOF


3. 访问


INGRESS_DOMAIN=$(kubectl get albconfig knative-internet -o jsonpath='{.status.loadBalancer.dnsname}')
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" "http://${INGRESS_DOMAIN}/v1/models/sklearn-iris:predict" -d @./iris-input.json


预期输出:


*   Trying 39.104.203.214:80...
* Connected to 39.104.203.214 (39.104.203.214) port 80 (#0)
> POST /v1/models/sklearn-iris:predict HTTP/1.1
> Host: sklearn-iris-predictor-default.default.example.com
> User-Agent: curl/7.84.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 21
< content-type: application/json
< date: Wed, 21 Jun 2023 03:17:23 GMT
< server: envoy
< x-envoy-upstream-service-time: 4
<
* Connection #0 to host 39.104.203.214 left intact
{"predictions":[1,1]}


您应该看到返回了两个预测(即 {"predictions": [1, 1]}),该结果为推理发送的两组数据点对应于索引为 1 的花,模型预测这两种花都是 “Iris Versicolour(杂色鸢尾花)”。


小结


当前 ACK  Serverless 已全新升级,顺应了 AI 等新场景爆发下催生的新需求,以标准、开放、灵活的方式帮助企业更简单、平滑地向 Serverless 业务架构演进。基于ACK Serverless 结合 KServe 可以给你带来 AI 模型推理场景下极致的 Serverless 体验。


相关链接:

[1] 开通 ACK Serverless

https://help.aliyun.com/zh/ack/serverless-kubernetes/user-guide/create-an-ask-cluster-2

[2] 部署 KServe

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/knative-support-kserve


点击此处,完成“ACK Serverless 快速入门”活动任务,获得阿里云限量定制鸭舌帽,快来参加吧!

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5天前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
本教程演示如何在ACK中多机分布式部署DeepSeek R1满血版。
|
6天前
|
人工智能 并行计算 Anolis
|
8天前
|
存储 监控 调度
应对IDC资源紧缺:ACK Edge如何解决LLM推理服务的弹性挑战
基于ACK Edge的混合云LLM弹性推理解决方案,通过动态调整云上和云下的GPU资源使用,来应对推理服务的潮汐流量需求,提高资源利用效率,降低运营成本,并确保服务稳定性和高可用性。
|
12天前
|
人工智能 运维 监控
AI驱动的操作系统服务评测报告
作为一位运维工程师,我使用Alibaba Cloud Linux 3操作系统进行云资源的运维和管理。通过控制台可快速开通并管理云资源,界面简洁、功能明确。安装SysOM和OS Copilot组件简单高效,支持实时监控集群健康状况,并提供精准的系统诊断与优化建议。OS Copilot智能助手能有效解答技术问题,提升工作效率。针对EOL系统的订阅服务提供了安全迁移保障。整体体验优秀,尤其适合中小企业降低运维复杂度。建议进一步优化权限管理、增加报告导出功能及增强Copilot交互性。
|
27天前
|
人工智能 运维 监控
探索未来:AI驱动的操作系统服务评测
### 探索未来:AI驱动的操作系统服务评测 本文介绍阿里云新推出的AI驱动操作系统服务套件,为运维工程师和开发者提供免费、智能的操作系统管理体验。通过Alibaba Cloud Linux的实际操作,评估其安装便捷性、系统健康监控、智能助手OS Copilot等功能。该服务显著提升了工作效率约30%,并增强了服务可靠性。AI技术的融入使系统管理更加智能化,值得尝试。
66 16
|
27天前
|
人工智能 弹性计算 运维
AI驱动的操作系统服务评测报告
阿里云推出AI驱动的一站式免费操作系统服务套件,包含SysOM管控组件和OS Copilot智能助手,提供集群健康监测、深度系统诊断等功能。通过直观的操作界面和详尽的诊断报告,帮助运维人员优化系统性能,提高工作效率。特别针对EOL操作系统提供订阅管理服务,确保系统安全。整体体验令人满意,但在文档详细度和定制化方面仍有提升空间。
60 14
|
30天前
|
人工智能 运维 安全
AI 驱动,全面升级!操作系统服务套件体验评测
作为一名运维工程师,我体验了阿里云的操作系统服务套件,选择了Alibaba Cloud Linux作为测试环境。通过安装SysOM和OS Copilot组件,轻松管理集群健康数据、进行系统诊断并获得优化建议。OS Copilot智能解答技术问题,节省查阅资料时间;订阅管理帮助我及时升级操作系统,保障安全。整体功能强大,提升了约20%的工作效率,值得推广。建议增加更多系统版本支持及自动优化功能。
|
1月前
|
人工智能 运维 Linux
AI驱动的操作系统服务体验:大模型时代的运维革新
AI驱动的操作系统服务体验:大模型时代的运维革新
38 5
|
1月前
|
SQL 人工智能 关系型数据库
AI时代下的PolarDB:In-DB一体化模型训练与推理服务
本次分享主题为“AI时代下的PolarDB:In-DB一体化模型训练与推理服务”,由阿里云资深专家贾新华和合思信息刘桐炯主讲。内容涵盖PolarDB的关键能力、AI硬件与软件结构支持、典型应用场景(MLops、ChatBI、智能搜索),以及合思实践案例——AI对话机器人提升客户响应效率。通过简化流程、SQL统一管理及内置算法,PolarDB显著降低了AI应用门槛,并在多个行业实现最佳实践。
|
1月前
|
人工智能 运维 Serverless
低成本 Serverless AI 检索介绍和实验
本文介绍了低成本Serverless AI检索技术,分为四部分:1) AI检索介绍,通过电商客服案例展示AI检索的应用和优势;2) 表格存储介绍,详细解释了表格存储的结构化数据处理能力及其在AI检索中的作用;3) 实验:RAG,通过具体实验演示基于表格存储的RAG流程及效果;4) 总结,强调向量检索、易用性和丰富的接口特性。整体内容展示了如何利用Serverless架构实现高效、低成本的AI检索解决方案。

相关产品

  • 容器服务Kubernetes版