如何基于 ACK Serverless 快速部署 AI 推理服务

简介: 如何基于 ACK Serverless 快速部署 AI 推理服务

作者:元毅

随着 AI 浪潮的到来,各种 AI 应用层出不穷,众所周知 AI 应用对 GPU 资源强烈依赖,但 GPU 很昂贵,如何降低 GPU 资源使用成本成为用户首要问题。而 AI 与 Serverless 技术结合,完全可以达到按需使用资源,降低资源成本的目的。


那么在云原生场景下,是否有这样开箱即用、标准、开放的方案呢?答案是有。我们在 ACK Serverless 中提供 Knative + KServe 的方案,可以帮助用户快速部署 AI 推理服务,按需使用,在无请求时支持 GPU 资源自动缩容到 0,大幅节省 AI 应用场景下资源使用成本。


关于 ACK Serverless


容器服务 Serverless 版 ACK Serverless 是一款基于阿里云弹性计算基础架构之上,同时完全兼容 Kubernetes 生态,安全、可靠的容器产品。通过 ACK Serverless,您无需管理和维护 k8s 集群即可快速创建 Kubernetes 容器应用,支持多种 GPU 资源规格,并且根据应用实际使用的资源量进行按需付费。



Knative 与 KServe


Knative 是一款基于 Kubernetes 之上的开源 Serverless 应用架构,提供基于请求的自动弹性、缩容到 0 以及灰度发布等功能。通过 Knative 部署 Serverless  应用可以做到专注于应用逻辑开发,资源按需使用。


而 KServe 提供了一个简单的 Kubernetes CRD,可以将单个或多个经过训练的模型部署到模型服务运行时,例如 TFServing、TorchServe、Triton 等推理服务器。这些模型服务运行时能够提供开箱即用的模型服务,KServe 提供基本 API 原语,让您轻松构建自定义模型服务运行时。基于 Knative 使用 InferenceService 部署推理模型后,您将获得以下 Serverless 能力:


  • 缩容到 0
  • 基于 RPS、并发数、CPU/GPU 指标自动弹性
  • 多版本管理
  • 流量管理
  • 安全认证
  • 开箱即用可观测性


KServe 模型服务控制面主要由 KServe Controller 负责,用于协调 InferenceService 自定义资源并创建 Knative Service 服务,可以实现根据请求流量实现自动缩放,以及在未收到流量时缩小到零。



基于 KServe 快速部署第一个推理服务


在本文中,我们将部署一个带有预测能力的 InferenceService 推理服务,该推理服务将使用 iris(鸢尾花)数据集训练的 scikit-learn 模型。该数据集具有三个输出类别:Iris Setosa(山鸢尾,索引:0)、Iris Versicolour(杂色鸢尾花,索引:1)和 Iris Virginica(弗吉尼亚鸢尾,索引:2)。最后您可以向部署的模型发送推理请求,以便预测对应的鸢尾植物类别。


前提条件

  • 已开通 ACK Serverless[1]
  • 部署 KServe[2]


当前阿里云 Knative 支持一键部署 KServe。支持 ASM、ALB、MSE 以及 Kourier 等网关能力。


创建 InferenceService 推理服务


kubectl apply -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  predictor:
    model:
      modelFormat:
        name: sklearn
      storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
EOF


检查服务状态:


kubectl get inferenceservices sklearn-iris


预期输出:


NAME           URL                                                         READY   PREV   LATEST   PREVROLLEDOUTREVISION   LATESTREADYREVISION                    AGE
sklearn-iris   http://sklearn-iris-predictor-default.default.example.com   True           100                              sklearn-iris-predictor-default-00001   51s


服务访问

1. 获取服务访问地址


$ kubectl get albconfig knative-internet
NAME               ALBID                    DNSNAME                                              PORT&PROTOCOL   CERTID   AGE
knative-internet   alb-hvd8nngl0lsdra15g0   alb-hvd8nngl0lsdra15g0.cn-beijing.alb.aliyuncs.com                            24m


2. 在文件中准备您的推理输入请求

iris 数据集是由三种鸢尾花,各 50 组数据构成的数据集。每个样本包含 4 个特征,分别为萼片(sepals)的长和宽、花瓣(petals)的长和宽。


cat <<EOF > "./iris-input.json"
{
  "instances": [
    [6.8,  2.8,  4.8,  1.4],
    [6.0,  3.4,  4.5,  1.6]
  ]
}
EOF


3. 访问


INGRESS_DOMAIN=$(kubectl get albconfig knative-internet -o jsonpath='{.status.loadBalancer.dnsname}')
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" "http://${INGRESS_DOMAIN}/v1/models/sklearn-iris:predict" -d @./iris-input.json


预期输出:


*   Trying 39.104.203.214:80...
* Connected to 39.104.203.214 (39.104.203.214) port 80 (#0)
> POST /v1/models/sklearn-iris:predict HTTP/1.1
> Host: sklearn-iris-predictor-default.default.example.com
> User-Agent: curl/7.84.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 21
< content-type: application/json
< date: Wed, 21 Jun 2023 03:17:23 GMT
< server: envoy
< x-envoy-upstream-service-time: 4
<
* Connection #0 to host 39.104.203.214 left intact
{"predictions":[1,1]}


您应该看到返回了两个预测(即 {"predictions": [1, 1]}),该结果为推理发送的两组数据点对应于索引为 1 的花,模型预测这两种花都是 “Iris Versicolour(杂色鸢尾花)”。


小结


当前 ACK  Serverless 已全新升级,顺应了 AI 等新场景爆发下催生的新需求,以标准、开放、灵活的方式帮助企业更简单、平滑地向 Serverless 业务架构演进。基于ACK Serverless 结合 KServe 可以给你带来 AI 模型推理场景下极致的 Serverless 体验。


相关链接:

[1] 开通 ACK Serverless

https://help.aliyun.com/zh/ack/serverless-kubernetes/user-guide/create-an-ask-cluster-2

[2] 部署 KServe

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/knative-support-kserve


点击此处,完成“ACK Serverless 快速入门”活动任务,获得阿里云限量定制鸭舌帽,快来参加吧!

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
566 30
|
3月前
|
人工智能 自然语言处理 安全
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
OPPO在2025开发者大会上展现智慧服务新范式:通过大模型与意图识别技术,构建全场景入口矩阵,实现“服务找人”。打通负一屏、小布助手等系统级入口,让服务主动触达用户;为开发者提供统一意图标准、一站式平台与安全准则,降低适配成本,共建开放生态。
414 31
|
3月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1160 6
|
3月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
3月前
|
存储 人工智能 安全
《Confidential MaaS 技术指南》发布,从 0 到 1 构建可验证 AI 推理环境
Confidential MaaS 将从前沿探索逐步成为 AI 服务的安全标准配置。
|
3月前
|
人工智能 供应链 搜索推荐
拔俗AI 智能就业咨询服务平台:求职者的导航,企业的招聘滤网
AI智能就业平台破解求职招聘困局:精准匹配求职者、企业与高校,打破信息壁垒。简历诊断、岗位推荐、技能提升一站式服务,让就业更高效。
203 0
|
3月前
|
人工智能 Cloud Native 自然语言处理
拔俗AI智能体服务开发:你的7x24小时数字员工,让企业效率飙升的秘密武器
在“人效为王”时代,企业面临服务响应慢、成本高、协同难等痛点。阿里云AI智能体以自主决策、多模态交互、持续学习三大引擎,打造永不疲倦的“数字员工”,实现7×24小时高效服务,助力企业降本增效、驱动创新增长。(238字)
313 0
|
3月前
|
人工智能 供应链 算法
AI 产业服务平台:打造产业智能化的“加速器”与“连接器”
AI产业服务平台整合技术、数据、算力与人才,为中小企业提供低门槛、一站式AI赋能服务,覆盖研发、生产、营销、管理全链条,助力产业智能化转型。
204 0
|
3月前
|
机器学习/深度学习 人工智能 监控
Java与AI模型部署:构建企业级模型服务与生命周期管理平台
随着企业AI模型数量的快速增长,模型部署与生命周期管理成为确保AI应用稳定运行的关键。本文深入探讨如何使用Java生态构建一个企业级的模型服务平台,实现模型的版本控制、A/B测试、灰度发布、监控与回滚。通过集成Spring Boot、Kubernetes、MLflow和监控工具,我们将展示如何构建一个高可用、可扩展的模型服务架构,为大规模AI应用提供坚实的运维基础。
330 0

相关产品

  • 容器服务Kubernetes版