基于粒子群优化算法的分布式电源选址与定容【多目标优化】【IEEE33节点】(Matlab代码实现)

简介: 基于粒子群优化算法的分布式电源选址与定容【多目标优化】【IEEE33节点】(Matlab代码实现)

💥1 概述

分布式电源接入配电网,实现就地消纳,可以提高新能源的利用率、提高电能质量和降低系统网损。然而接入点位置和电源的容量的差异对配电网的影响不同,如果位置和容量不合适,可能会导致系统中某处的电压越限、总系统的网损增加。因此在电源规划阶段分析分布式电源接入点的位置和容量十分有必要。分布式电源接入点和接入容量的选择问题是一个非线性、多变量、多约束的问题。目前国内外关于这方面的研究主要集中在两个方面,一是数学模型的优化,二是模型求解和算法优化。已有的诸多研究取决与分布式电源的种类,即是否只向电网提供有功功率。而且很多算法


利用准确的损耗公式,计算时需要准确阻抗矩阵和雅可比矩阵,计算效率低。因此针对不同大小、复杂性,有待于找出一种适用于所有情况的方法。本文提出了一种确定分布式电源的最佳容量和位置的分析,该方法计算效率高,适用范围广。


1.1 目标函数

(1)以系统有功网损最小和电压偏差最小建立多目标优化数学模型,其目标函数为:

式中:N为支路总数;Pi和Qi分别为第i条支路的有功与无功功率;Ui为第i条支路的末端节点电压;Ri为第i条支路的电阻;ki为第i条支路的开关状态,0代表断开,1代表闭合;f1为总有功损耗。t为节点编号;k为节点总数;Uts、UtN分别表示第t个节点的实际电压与额定电压;f2表示电压偏移量。


(2)光伏消纳量增加通常也会引起网络损耗的增加,为真实体现系统中光伏的有效消纳,在此将光伏实际消纳量与系统网络损耗的差值定义为有效消纳量Ec如下:


式中:T 为重构周期时段数;H为接入分布式光伏电源的节点数;PC(i,t )为节点i在t时段实际消纳的分布式光伏有功功率;K为配电网中的闭合支路数;Ptk、Qtk和Utk分别为支路k 在t时段的有功功率、无功功率和电压;rk为支路k的电阻。

光伏设备出力PPV如下:


               


其中,E 为光伏电池板数;PS(t,e )为第e个光伏电池板在t时段实际可发功率的标幺值;htmax为在t时段光照强度的最大值;Ae、ηe分别为第e个光伏电池板的面积和光电转换效率。


为了表征有效消纳量与光伏设备出力的关系,并使优化模型更为简便,将光伏设备出力和光伏有效消纳量比值定义为函数f3。则f3越小证明消纳效果越好,最小化目标函数为:


优化调度模型的目标函数F由3部分组合而成,如下式所示:

2.2 约束条件

优化的目标是得到5个接入节点和对应接入的容量,平衡节点1不接光伏,那么可接入光伏节点的取值范围为2-33;容量范围为0-2MW,步长为0.1MW

📚2 运行结果

部分代码:

Ppv=sum(x(6:10))*0.1;%光伏消纳总量
f1=P1*SB;%总损耗
f2=sum(abs(U-1));%电压偏差
w1=100;w2=100;w3=1;
Ec=Ppv-f1;
f3=Ppv/Ec;
F=w1*f1+w2*f2+w3*f3+KU*SU+KI*SI;
disp('网损/kW')
f1*1000
disp('电压偏差/pu:')
f2
disp('出力消纳比为:')
f3
....
xlabel('迭代次数');
ylabel('目标函数值');
title('迭代收敛图')
hold on;
grid on;
disp('光伏接入点为:')
BestSol1.Position(1:5)
disp('对应接入容量为/MW:')
BestSol1.Position(6:10)*0.1

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]孙博伟.配电网中分布式能源的选址与定容方法[J].电力勘测设计,2016(01):61-64.DOI:10.13500/j.cnki.11-4908/tk.2016.01.014.

[2]孙博伟.配电网中分布式能源的选址与定容方法[J].电力勘测设计,2016(01):61-64.DOI:10.13500/j.cnki.11-4908/tk.2016.01.014.

🌈4 Matlab代码实现


相关文章
|
23天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
258 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
153 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
125 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)