Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)

1、OutputFormat数据输出

1.1 OutputFormat接口实现类

OutputFormat是MapReduce输出的基类,所以实现MapReduce输出都实现了OutputFormat接口。

d37aa5158c654999a1788f69ae422a95.png

1、MapReduce默认的输出格式是TextOutputFormat

2、也可以自定义OutputFormat类,只要继承就行。

1.2 自定义OutputFormat案例实操

1、需求

过滤输入的 log 日志,包含 atguigu 的网站输出到 e:/atguigu.log,不包含 atguigu 的网站输出到 e:/other.log。

(1)输入数据

链接:https://pan.baidu.com/s/1UYNVYaRCxp5kbrbS8AXJaw

提取码:zhm6

2、需求分析

b143a3be971d4eba8a10b1d4881cd49f.png

3、案例实操

(1)Mapper类

package org.example._08outputformat;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
 * @ClassName LogMapper
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/22 9:26
 * @Version 1.0
 */
public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        context.write(value,NullWritable.get());
    }
}

(2)Reducer类

package org.example._08outputformat;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
 * @ClassName LogReducer
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/22 9:30
 * @Version 1.0
 */
public class LogReducer extends Reducer<Text, NullWritable,Text,NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        for (NullWritable value : values) {
            context.write(key,value);
        }
    }
}

(3)OutputFormat类

package org.example._08outputformat;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
 * @ClassName LogOutFormat
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/22 9:31
 * @Version 1.0
 */
public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {
    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
        //自定义一个RecordWriter返回
        LogRecordWriter logRecordWriter=new LogRecordWriter(taskAttemptContext);
        return logRecordWriter;
    }
}

(4)编写RecordWriter类

package org.example._08outputformat;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
/**
 * @ClassName LogRecordWriter
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/22 9:33
 * @Version 1.0
 */
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {
    private FSDataOutputStream zhmOut;
    private FSDataOutputStream otherOut;
    public LogRecordWriter(TaskAttemptContext job) {
        try {
            //获取文件系统对象
            FileSystem fileSystem=FileSystem.get(job.getConfiguration());
            //利用文件系统对象创建两个输出流对应不同的目录
            zhmOut=fileSystem.create(new Path("E:\\test\\output7\\zhm.log"));
            otherOut=fileSystem.create(new Path("E:\\test\\output7\\other.log"));
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }
    @Override
    public void write(Text text, NullWritable nullWritable) throws IOException, InterruptedException {
        String log=text.toString();
        //根据一行的log数据是否包含atguigu,判段两条输出输入流输出的内容
        if (log.contains("atguigu")){
            zhmOut.writeBytes(log+"\n");
        }else {
            otherOut.writeBytes(log+"\n");
        }
    }
    @Override
    public void close(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
        IOUtils.closeStream(zhmOut);
        IOUtils.closeStream(otherOut);
    }
}

(5)编写Driver类

package org.example._08outputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
 * @ClassName LogDriver
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/22 9:50
 * @Version 1.0
 */
public class LogDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration configuration=new Configuration();
        Job job=Job.getInstance();
        job.setJarByClass(LogDriver.class);
        job.setMapperClass(LogMapper.class);
        job.setReducerClass(LogReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);
        //设置自定义的outputformat
        job.setOutputFormatClass(LogOutputFormat.class);
        FileInputFormat.setInputPaths(job,new Path("E:\\test\\input3"));
        //虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileOutputformat
        //而fileoutputformat要输出一个_success文件,所以在这还得指定一个输出目录
        FileOutputFormat.setOutputPath(job,new Path("E:\\test\\output7"));
        System.exit(job.waitForCompletion(true)?0:1);
    }
}

2、MapReduce内核源码解析

2.1 MapTask工作机制


d909e0dcda504f288a4992a6ac2e2ca2.png

(1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSpilt中解析出一个个key/value.

(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生产一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:

(a)利用快速排序算法对缓冲区内的数据进行排序,排序的方式是,先按照分区编号partition进行排序,然后按照key进行排序。这样,进过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

(b)按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

(c)将分区数据的元信息写到内存索引数据结构SpillRecord中,其实每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

(5)Merge阶段:当所以数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

当所有数据处理完成后,Maptask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生产相应的索引文件output/file.out.index。

在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,知道最终得到一个大文件。

让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

2.2 ReduceTask工作机制

430a2ba6f5ef4b1cb4b6731b9ecb8d8d.png

(1)copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阙值,则写在磁盘上,否者直接放到内存中。

(2)Sort阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚合的一组数据。为了将key相同的数据聚集在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需要对所有数据进行一次归并排序即可。

(3)Reduce阶段:reduce()函数将计算结果写到HDFS上。

2.3 ReduceTask并行度决定机制

MapTask并行度是由切片个数决定,切片个数由输入文件和切片规则决定。

1·、设置ReduceTask并行度(个数)。

ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask的数量是可以手动进行设置的:

job.setNumReduceTasks(4);//这样就设置了4个ReduceTask

2、注意事项

(1)ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。

(2))ReduceTask默认值就是1,所以输出文件个数为一个。

(3)如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜。

(4)ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个ReduceTask。

(5)具体多少个ReduceTask,需要根据集群性能而定。

(6)如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。

2.4 MapTask&&ReduceTask源码解析

1、MapTask源码解析

0c30b53b4b7f412798a6cb274b78e497.png

2、ReduceTask源码解析

d98b7c76ac1e43a08af135d19991f707.png



相关文章
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
30天前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
52 0
|
3月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
76 12
|
2月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
2月前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
9月前
|
分布式计算 Hadoop
Hadoop系列 mapreduce 原理分析
Hadoop系列 mapreduce 原理分析
96 1
|
4月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
156 3
|
8月前
|
分布式计算 Hadoop Java
Hadoop MapReduce编程
该教程指导编写Hadoop MapReduce程序处理天气数据。任务包括计算每个城市ID的最高、最低气温、气温出现次数和平均气温。在读取数据时需忽略表头,且数据应为整数。教程中提供了环境变量设置、Java编译、jar包创建及MapReduce执行的步骤说明,但假设读者已具备基础操作技能。此外,还提到一个扩展练习,通过分区功能将具有相同尾数的数字分组到不同文件。
78 1

推荐镜像

更多