通义千问7B模型开源,魔搭最佳实践来了

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 通义千问开源!阿里云开源通义千问70亿参数模型,包括通用模型Qwen-7B-Base和对话模型Qwen-7B-Chat,两款模型均已上线ModelScope魔搭社区,开源、免费、可商用,欢迎大家来体验。

导读

通义千问开源!阿里云开源通义千问70亿参数模型,包括通用模型Qwen-7B和对话模型Qwen-7B-Chat,两款模型均已上线ModelScope魔搭社区,开源、免费、可商用,欢迎大家来体验。


模型体验链接:https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary


环境配置与安装

本文在ModelScope的Notebook的环境(这里以PAI-DSW为例)配置下运行 (可以单卡运行, 显存要求24G)


服务器连接与环境准备

1、进入ModelScope首页:modelscope.cn,进入我的Notebook


2、选择GPU环境,进入PAI-DSW在线开发环境


3、新建Notebook



模型链接及下载

Qwen系列模型现已在ModelScope社区开源,包括:


Qwen-7B

模型链接:https://modelscope.cn/models/qwen/Qwen-7B/summary


Qwen-7B-Chat

模型链接:https://modelscope.cn/models/Qwen/Qwen-7b-chat/summary


社区支持直接下载模型的repo:

frommodelscope.hub.snapshot_downloadimportsnapshot_downloadmodel_dir=snapshot_download('Qwen/Qwen-7b-chat', 'v1.0.0')


或者通过如下代码,实现模型下载,以及load model, tokenizer:

defget_model_tokenizer_Qwen(model_dir: str,
torch_dtype: Dtype,
load_model: bool=True):
config=read_config(model_dir)
logger.info(config)
model_config=QwenConfig.from_pretrained(model_dir)
model_config.torch_dtype=torch_dtypelogger.info(model_config)
tokenizer=QwenTokenizer.from_pretrained(model_dir)
model=Noneifload_model:
model=Model.from_pretrained(
model_dir,
cfg_dict=config,
config=model_config,
device_map='auto',
torch_dtype=torch_dtype)
returnmodel, tokenizerget_model_tokenizer_Qwen(model_dir, torch.bfloat16)


创空间体验

Qwen-7B-Chat Bot创空间链接:https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary


欢迎小伙伴们来创空间体验Qwen-7B-Chat的模型效果👏~


模型推理

Qwen-7B-Chat推理代码:

importosos.environ['CUDA_VISIBLE_DEVICES'] ='0'frommodelscope.pipelinesimportpipelinefrommodelscope.utils.constantimportTasksmodel_id='Qwen/Qwen-7b-chat'pipe=pipeline(
task=Tasks.chat, model=model_id, device_map='auto')
history=Nonesystem='You are a helpful assistant.'text='浙江的省会在哪里?'results=pipe(text, history=history, system=system)
response, history=results['response'], results['history']
print(f'Response: {response}')
text='它有什么好玩的地方呢?'results=pipe(text, history=history, system=system)
response, history=results['response'], results['history']
print(f'Response: {response}')
"""Response: 浙江的省会是杭州。Response: 杭州是一座历史悠久、文化底蕴深厚的城市,拥有许多著名景点,如西湖、西溪湿地、灵隐寺、千岛湖等,其中西湖是杭州最著名的景点,被誉为“天下第一湖”。此外,杭州还有许多古迹、文化街区、美食和艺术空间等,值得一去。"""


Qwen-7B推理代码:

importosos.environ['CUDA_VISIBLE_DEVICES'] ='0'frommodelscope.pipelinesimportpipelinefrommodelscope.utils.constantimportTasksmodel_id='Qwen/Qwen-7b'pipeline_ins=pipeline(
task=Tasks.text_generation, model=model_id, device_map='auto')
text='蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是'result=pipeline_ins(text)
print(result['text'])


SFT数据集链接和下载

这里使用魔搭上开源的数据集finance_en(包含68912条金融数据)作为微调数据集:

frommodelscopeimportMsDatasetfinance_en=MsDataset.load(
'wyj123456/finance_en', split='train').to_hf_dataset()
print(len(finance_en["instruction"]))
print(finance_en[0])
"""Out68912{'instruction': 'For a car, what scams can be plotted with 0% financing vs rebate?', 'input': None, 'output': "The car deal makes money 3 ways. If you pay in one lump payment. If the payment is greater than what they paid for the car, plus their expenses, they make a profit. They loan you the money. You make payments over months or years, if the total amount you pay is greater than what they paid for the car, plus their expenses, plus their finance expenses they make money. Of course the money takes years to come in, or they sell your loan to another business to get the money faster but in a smaller amount. You trade in a car and they sell it at a profit. Of course that new transaction could be a lump sum or a loan on the used car... They or course make money if you bring the car back for maintenance, or you buy lots of expensive dealer options. Some dealers wave two deals in front of you: get a 0% interest loan. These tend to be shorter 12 months vs 36,48,60 or even 72 months. The shorter length makes it harder for many to afford. If you can't swing the 12 large payments they offer you at x% loan for y years that keeps the payments in your budget. pay cash and get a rebate. If you take the rebate you can't get the 0% loan. If you take the 0% loan you can't get the rebate. The price you negotiate minus the rebate is enough to make a profit. The key is not letting them know which offer you are interested in. Don't even mention a trade in until the price of the new car has been finalized. Otherwise they will adjust the price, rebate, interest rate, length of loan,  and trade-in value to maximize their profit. The suggestion of running the numbers through a spreadsheet is a good one. If you get a loan for 2% from your bank/credit union for 3 years and the rebate from the dealer, it will cost less in total than the 0% loan from the dealer. The key is to get the loan approved by the bank/credit union before meeting with the dealer. The money from the bank looks like cash to the dealer.", 'text': None}"""


模型训练最佳实践

微调Qwen-7B模型。这里基于ModelScope的开源轻量化微调工具swift来实现。


开源代码:https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/llm_sft.py


git clone swift后,运行sft代码:

# 获取示例代码gitclonehttps://github.com/modelscope/swift.gitcdswift/examples/pytorch/llm# sftbashrun_sft.sh


具体的代码部分:

导入相关的库

# note: utils can be found ata# `https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/utils`# it is recommended that you git clone the swift repo importosfromdataclassesimportdataclass, fieldfromfunctoolsimportpartialfromtypesimportMethodTypefromtypingimportList, OptionalimporttorchfromtorchimportTensorfromutilsimport (DATASET_MAPPING, DEFAULT_PROMPT, MODEL_MAPPING, 
get_dataset, get_model_tokenizer, plot_images, 
process_dataset, select_dtype)
fromswiftimport (HubStrategy, Seq2SeqTrainer, 
Seq2SeqTrainingArguments,
get_logger)
fromswift.utilsimport (add_version_to_work_dir, parse_args, 
print_model_info, seed_everything, 
show_freeze_layers)
fromswift.utils.llm_utilsimport (data_collate_fn, print_example,
stat_dataset, tokenize_function)
logger=get_logger()


命令行参数定义

@dataclassclassSftArguments:
model_type: str=field(
default='Qwen-7b',
metadata={'choices': list(MODEL_MAPPING.keys())})
sft_type: str=field(
default='lora', metadata={'choices': ['lora', 'full']})
output_dir: Optional[str] =Noneseed: int=42resume_from_ckpt: Optional[str] =Nonedtype: Optional[str] =field(
default=None, metadata={'choices': {'bf16', 'fp16', 'fp32'}})
ignore_args_error: bool=False# True: notebook compatibilitydataset: str=field(
default='finance-en',
metadata={'help': f'dataset choices: {list(DATASET_MAPPING.keys())}'})
dataset_seed: int=42dataset_sample: Optional[int] =Nonedataset_test_size: float=0.01prompt: str=DEFAULT_PROMPTmax_length: Optional[int] =2048lora_target_modules: Optional[List[str]] =Nonelora_rank: int=8lora_alpha: int=32lora_dropout_p: float=0.1gradient_checkpoint: bool=Truebatch_size: int=1num_train_epochs: int=1optim: str='adamw_torch'learning_rate: Optional[float] =Noneweight_decay: float=0.01gradient_accumulation_steps: int=16max_grad_norm: float=1.lr_scheduler_type: str='cosine'warmup_ratio: float=0.1eval_steps: int=50save_steps: Optional[int] =Nonesave_total_limit: int=2logging_steps: int=5push_to_hub: bool=False# 'user_name/repo_name' or 'repo_name'hub_model_id: Optional[str] =Nonehub_private_repo: bool=Truehub_strategy: HubStrategy=HubStrategy.EVERY_SAVE# None: use env var `MODELSCOPE_API_TOKEN`hub_token: Optional[str] =Nonedef__post_init__(self):
ifself.sft_type=='lora':
ifself.learning_rateisNone:
self.learning_rate=1e-4ifself.save_stepsisNone:
self.save_steps=self.eval_stepselifself.sft_type=='full':
ifself.learning_rateisNone:
self.learning_rate=1e-5ifself.save_stepsisNone:
# Saving the model takes a long timeself.save_steps=self.eval_steps*4else:
raiseValueError(f'sft_type: {self.sft_type}')
ifself.output_dirisNone:
self.output_dir='runs'self.output_dir=os.path.join(self.output_dir, self.model_type)
ifself.lora_target_modulesisNone:
self.lora_target_modules=MODEL_MAPPING[
self.model_type]['lora_TM']
self.torch_dtype, self.fp16, self.bf16=select_dtype(
self.dtype, self.model_type)
ifself.hub_model_idisNone:
self.hub_model_id=f'{self.model_type}-sft'


导入模型

seed_everything(args.seed)
# ### Load Model and Tokenizermodel, tokenizer=get_model_tokenizer(args.model_type, torch_dtype=args.torch_dtype)
ifargs.gradient_checkpoint:
model.gradient_checkpointing_enable()
model.enable_input_require_grads()


准备LoRA

# ### Prepare loraifargs.sft_type=='lora':
fromswiftimportLoRAConfig, Swiftifargs.resume_from_ckptisNone:
lora_config=LoRAConfig(
r=args.lora_rank,
target_modules=args.lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout_p)
logger.info(f'lora_config: {lora_config}')
model=Swift.prepare_model(model, lora_config)
else:
model=Swift.from_pretrained(
model, args.resume_from_ckpt, is_trainable=True)
show_freeze_layers(model)
print_model_info(model)
# check the device and dtype of the model_p: Tensor=list(model.parameters())[-1]
logger.info(f'device: {_p.device}, dtype: {_p.dtype}')


导入数据集

# ### Load Datasetdataset=get_dataset(args.dataset.split(','))
train_dataset, val_dataset=process_dataset(dataset,
args.dataset_test_size,
args.dataset_sample,
args.dataset_seed)
tokenize_func=partial(
tokenize_function,
tokenizer=tokenizer,
prompt=args.prompt,
max_length=args.max_length)
train_dataset=train_dataset.map(tokenize_func)
val_dataset=val_dataset.map(tokenize_func)
deldataset# Data analysisstat_dataset(train_dataset)
stat_dataset(val_dataset)
data_collator=partial(data_collate_fn, tokenizer=tokenizer)
print_example(train_dataset[0], tokenizer)


配置Config

# ### Setting trainer_argsoutput_dir=add_version_to_work_dir(args.output_dir)
trainer_args=Seq2SeqTrainingArguments(
output_dir=output_dir,
do_train=True,
do_eval=True,
evaluation_strategy='steps',
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
max_grad_norm=args.max_grad_norm,
num_train_epochs=args.num_train_epochs,
lr_scheduler_type=args.lr_scheduler_type,
warmup_ratio=args.warmup_ratio,
logging_steps=args.logging_steps,
save_strategy='steps',
save_steps=args.save_steps,
save_total_limit=args.save_total_limit,
bf16=args.bf16,
fp16=args.fp16,
eval_steps=args.eval_steps,
dataloader_num_workers=1,
load_best_model_at_end=True,
metric_for_best_model='loss',
greater_is_better=False,
sortish_sampler=True,
optim=args.optim,
hub_model_id=args.hub_model_id,
hub_private_repo=args.hub_private_repo,
hub_strategy=args.hub_strategy,
hub_token=args.hub_token,
push_to_hub=args.push_to_hub,
resume_from_checkpoint=args.resume_from_ckpt)


开启微调:

# ### Finetuningtrainer=Seq2SeqTrainer(
model=model,
args=trainer_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
trainer.train()


可视化:

Tensorboard 命令: (e.g.)

tensorboard --logdir runs/Qwen-7b/v0-20230802-170622/runs --port 6006

# ### Visualizationimages_dir=os.path.join(output_dir, 'images')
tb_dir=os.path.join(output_dir, 'runs')
folder_name=os.listdir(tb_dir)[0]
tb_dir=os.path.join(tb_dir, folder_name)
plot_images(images_dir, tb_dir, ['train/loss'], 0.9)
ifargs.push_to_hub:
trainer._add_patterns_to_gitignores(['images/'])
trainer.push_to_hub()



资源消耗

Qwen-7B用lora的方式微调的显存占用如下,大约在21G. (batch_size=1, max_length=2048)



使用训练后的模型进行推理

代码链接:https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/llm_infer.py

运行infer脚本:

# inferbashrun_infer.sh


具体的代码部分:

# note: utils can be found ata# `https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/utils`# it is recommended that you git clone the swift repo # ### Setting up experimental environment.importosfromdataclassesimportdataclass, fieldfromfunctoolsimportpartialfromtypingimportList, OptionalimporttorchfromtransformersimportGenerationConfig, TextStreamerfromutilsimport (DATASET_MAPPER, DEFAULT_PROMPT, MODEL_MAPPER, get_dataset,
get_model_tokenizer, inference, parse_args, process_dataset,
tokenize_function)
frommodelscopeimportget_loggerfrommodelscope.swiftimportLoRAConfig, Swiftlogger=get_logger()
@dataclassclassInferArguments:
model_type: str=field(
default='Qwen-7b', metadata={'choices': list(MODEL_MAPPER.keys())})
sft_type: str=field(
default='lora', metadata={'choices': ['lora', 'full']})
ckpt_path: str='/path/to/your/iter_xxx.pth'eval_human: bool=False# False: eval test_datasetignore_args_error: bool=False# True: notebook compatibilitydataset: str=field(
default='finance_en',
metadata={'help': f'dataset choices: {list(DATASET_MAPPER.keys())}'})
dataset_seed: int=42dataset_sample: Optional[int] =Nonedataset_test_size: float=0.01prompt: str=DEFAULT_PROMPTmax_length: Optional[int] =2048lora_target_modules: Optional[List[str]] =Nonelora_rank: int=8lora_alpha: int=32lora_dropout_p: float=0.1max_new_tokens: int=512temperature: float=0.9top_k: int=50top_p: float=0.9def__post_init__(self):
ifself.lora_target_modulesisNone:
self.lora_target_modules=MODEL_MAPPER[self.model_type]['lora_TM']
ifnotos.path.isfile(self.ckpt_path):
raiseValueError(
f'Please enter a valid ckpt_path: {self.ckpt_path}')
defllm_infer(args: InferArguments) ->None:
# ### Loading Model and Tokenizersupport_bf16=torch.cuda.is_bf16_supported()
ifnotsupport_bf16:
logger.warning(f'support_bf16: {support_bf16}')
model, tokenizer, _=get_model_tokenizer(
args.model_type, torch_dtype=torch.bfloat16)
# ### Preparing loraifargs.sft_type=='lora':
lora_config=LoRAConfig(
replace_modules=args.lora_target_modules,
rank=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout_p,
pretrained_weights=args.ckpt_path)
logger.info(f'lora_config: {lora_config}')
model=Swift.prepare_model(model, lora_config)
elifargs.sft_type=='full':
state_dict=torch.load(args.ckpt_path, map_location='cpu')
model.load_state_dict(state_dict)
else:
raiseValueError(f'args.sft_type: {args.sft_type}')
# ### Inferencetokenize_func=partial(
tokenize_function,
tokenizer=tokenizer,
prompt=args.prompt,
max_length=args.max_length)
streamer=TextStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_config=GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
logger.info(f'generation_config: {generation_config}')
ifargs.eval_human:
whileTrue:
instruction=input('<<< ')
data= {'instruction': instruction}
input_ids=tokenize_func(data)['input_ids']
inference(input_ids, model, tokenizer, streamer, generation_config)
print('-'*80)
else:
dataset=get_dataset(args.dataset.split(','))
_, test_dataset=process_dataset(dataset, args.dataset_test_size,
args.dataset_sample,
args.dataset_seed)
mini_test_dataset=test_dataset.select(range(10))
deldatasetfordatainmini_test_dataset:
output=data['output']
data['output'] =Noneinput_ids=tokenize_func(data)['input_ids']
inference(input_ids, model, tokenizer, streamer, generation_config)
print()
print(f'[LABELS]{output}')
print('-'*80)
# input('next[ENTER]')if__name__=='__main__':
args, remaining_argv=parse_args(InferArguments)
iflen(remaining_argv) >0:
ifargs.ignore_args_error:
logger.warning(f'remaining_argv: {remaining_argv}')
else:
raiseValueError(f'remaining_argv: {remaining_argv}')
llm_infer(args)


模型体验链接:https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary

相关文章
|
19天前
|
机器学习/深度学习 人工智能 监控
DiffuEraser:阿里通义实验室推出的视频修复模型,支持高清修复、时间一致性优化
DiffuEraser 是阿里通义实验室推出的基于稳定扩散模型的视频修复工具,能够生成丰富的细节并保持时间一致性,适用于电影修复、监控增强等场景。
122 26
DiffuEraser:阿里通义实验室推出的视频修复模型,支持高清修复、时间一致性优化
|
17天前
|
人工智能 编解码 JSON
Qwen2.5-VL:阿里通义千问最新开源视觉语言模型,能够理解超过1小时的长视频
Qwen2.5-VL 是阿里通义千问团队开源的视觉语言模型,具有3B、7B和72B三种不同规模,能够识别常见物体、分析图像中的文本、图表等元素,并具备作为视觉Agent的能力。
291 18
Qwen2.5-VL:阿里通义千问最新开源视觉语言模型,能够理解超过1小时的长视频
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
Qwen2.5-Max:阿里通义千问超大规模 MoE 模型,使用超过20万亿tokens的预训练数据
Qwen2.5-Max是阿里云推出的超大规模MoE模型,具备强大的语言处理能力、编程辅助和多模态处理功能,支持29种以上语言和高达128K的上下文长度。
1582 13
Qwen2.5-Max:阿里通义千问超大规模 MoE 模型,使用超过20万亿tokens的预训练数据
|
4天前
|
人工智能 搜索推荐 程序员
通义灵码全新上线模型选择功能,新增支持 DeepSeek-V3 和 DeepSeek-R1 模型
阿里云百炼平台推出DeepSeek-V3、DeepSeek-R1等6款新模型,丰富AI模型矩阵。通义灵码随之升级,支持Qwen2.5、DeepSeek-V3和R1系列模型选择,助力AI编程。开发者可通过VS Code和JetBrains IDE轻松切换模型,实现复杂编码任务的自动化处理,进一步降低AI编程门槛,提供个性化服务。
278 19
|
15天前
|
人工智能 测试技术
QVQ-72B-Preview:阿里通义千问最新多模态推理模型,视觉推理助力复杂图像理解
阿里云通义千问团队开源的多模态推理模型 QVQ-72B-Preview,专注于提升视觉推理能力,支持复杂图像理解和逐步推理。
88 6
QVQ-72B-Preview:阿里通义千问最新多模态推理模型,视觉推理助力复杂图像理解
|
3天前
|
人工智能 自然语言处理 程序员
如何在通义灵码里用上DeepSeek-V3 和 DeepSeek-R1 满血版671B模型?
除了 AI 程序员的重磅上线外,近期通义灵码能力再升级全新上线模型选择功能,目前已经支持 Qwen2.5、DeepSeek-V3 和 R1系列模型,用户可以在 VSCode 和 JetBrains 里搜索并下载最新通义灵码插件,在输入框里选择模型,即可轻松切换模型。
626 13
|
2天前
|
人工智能 自然语言处理 PyTorch
InspireMusic:阿里通义实验室开源的音乐生成模型,支持文本或音频生成多种风格的音乐
阿里通义实验室开源的音乐生成技术,支持通过简单描述快速生成多种风格的高质量音乐作品。
133 4
|
1月前
|
编解码 Cloud Native 算法
通义万相:视觉生成大模型再进化
通义万相是阿里云推出的视觉生成大模型,涵盖图像和视频生成。其2.0版本在文生图和文生视频方面进行了重大升级,采用Diffusion Transformer架构,提升了模型的灵活性和可控性。通过高质量美学标准和多语言支持,大幅增强了画面表现力。此外,视频生成方面引入高压缩比VAE、1080P长视频生成及多样化艺术风格支持,实现了更丰富的创意表达。未来,通义万相将继续探索视觉领域的规模化和泛化,打造更加通用的视觉生成大模型。
|
1月前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
220 22
|
2月前
|
关系型数据库 机器人 OLAP
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
PolarDB开源社区推出基于云原生数据仓库AnalyticDB和通义千问大模型的“PolarDB知识问答助手”,实现一站式全链路RAG能力,大幅提升查询效率和问答准确率。该系统整合静态和动态知识库,提供高效的数据检索与查询服务,支持多种场景下的精准回答,并持续优化用户体验。欢迎加入钉群体验并提出宝贵意见。
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验

热门文章

最新文章