可解释性机器学习:PDP带你揭开随机森林心脏病预测神秘面纱!

简介: 本文针对可解释性机器学习以及其在心脏病预测中的应用进行了介绍。首先强调了可解释性机器学习对于信任和使用模型的重要性,并提出了随机森林作为一种强大的模型。然后介绍了PDP方法,以揭示随机森林在心脏病预测中的可解释性。这些内容将有助于我们更好地理解和应用可解释性机器学习的方法。

一、引言



随着机器学习模型在实际应用中的广泛应用,人们对于模型的解释性和可理解性日益关注。可解释性机器学习是指能够清晰、透明地解释机器学习模型决策过程的一种方法和技术。在许多领域中,如医疗诊断、金融风险评估和自动驾驶等,解释模型的决策是至关重要的。


可解释性机器学习的重要性在于提供了对机器学习模型如何做出决策的理解和信任。具有良好可解释性的模型可以帮助人们了解模型对数据的敏感度,揭示模型背后的规律,并帮助人们纠正数据偏见、发现模型的局限性。另外,对于需要解释和论证的领域,如法律、医疗和金融,可解释性机器学习也能提供有效的解释和证据支持。


Partial Dependence Plot(PDP)方法是一种常用的可解释性工具,用于分析模型中特征与预测结果之间的关系。在心脏病预测中,随机森林模型可以利用临床指标和生理特征进行预测。通过PDP分析可以深入了解特征对心脏病预测的影响,并识别最重要的特征。这对医生和研究人员了解心脏病的发病机制,并做出决策支持是很有帮助的。


本文针对可解释性机器学习以及其在心脏病预测中的应用进行了介绍。首先强调了可解释性机器学习对于信任和使用模型的重要性,并提出了随机森林作为一种强大的模型。然后介绍了PDP方法,以揭示随机森林在心脏病预测中的可解释性。这些内容将有助于我们更好地理解和应用可解释性机器学习的方法。


二、可解释性机器学习简介



2.1 可解释性机器学习的定义


可解释性机器学习是指通过解释模型的决策过程和预测结果,使人们能够理解模型如何进行预测并作出信任和合理决策的过程。它强调对模型的透明度和理解能力,有助于提高模型的可靠性和实际应用性。可解释性机器学习的价值在于增加了对算法决策的可控性和解释性,能够帮助我们发现模型中的潜在问题,并避免不必要的错误和误解。


2.2 可解释性机器学习的优点、挑战和应用场景


  • 「可解释性机器学习优点」
  1. 可信度:通过提供模型的解释,可解释性机器学习增强了用户对模型的信任,特别是在关键决策和敏感领域。
  2. 可验证性:可解释性机器学习的模型可以更容易地被验证和审查,从而确保其符合预期和要求。
  3. 决策支持:通过理解模型的决策过程,可解释性机器学习可以为决策制定者提供支持和指导。


  • 「然而,可解释性机器学习也面临一些挑战」
  1. 复杂性:某些机器学习模型的复杂性使其难以解释,例如深度神经网络。
  2. 可解释性与性能的权衡:在追求模型解释性的同时,需要权衡模型的性能和准确性。
  3. 基于黑盒模型的应用:某些领域对于可解释性机器学习的需求可能无法满足,因为它们依赖于使用非常复杂的黑盒模型。


  • 可解释性机器学习的应用场景广泛,包括但不限于:


  1. 医疗诊断:通过解释模型的预测结果,帮助医生理解模型如何进行诊断,并提供可信赖的决策依据。
  2. 金融风险评估:解释模型的决策过程,帮助金融机构和监管机构理解和评估风险模型,从而减轻金融风险。
  3. 自动驾驶:通过解释自动驾驶模型如何做出决策,增加人们对自动驾驶的信任和接受度。


2.3 PDP探索机器学习模型的特征重要性和预测解释能力


「Partial Dependence Plot(PDP)」 是一种可解释性工具,用于分析机器学习模型中特征和预测结果之间的关系。PDP通过观察一个或多个特定特征的变化如何影响模型的预测结果,来揭示出模型对这些特征的依赖关系和重要性。


  • 「PDP的生成过程如下:」
  1. 选择一个或多个感兴趣的特征,这些特征可能对预测结果有重要影响或者我们对其关系感兴趣。 然后,确定这些特征的取值范围或者在某个区间内进行取样。
  2. 对于每个特征取值,保持其他特征不变,用模型进行预测并记录预测结果。 最后,将每个特征取值对应的预测结果绘制在图表上,形成PDP图。
  3. PDP图通常采用折线图或者等高线图的形式展示。横轴表示特征的取值范围或者变化程度,纵轴表示模型的预测结果。通过观察PDP图,可以直观地了解特征与预测结果之间的关系。


  • 「PDP的解释能力和应用场景包括:」
  1. 特征重要性:PDP可以帮助评估特征对模型预测的贡献度,从而了解特征在模型中的重要性程度。 特征交互作用:通过观察PDP图,可以揭示不同特征之间
  2. 交互作用,即一个特征对另一个特征的影响程度。 预测可解释性:PDP可以帮助用户理解模型如何对特征进行解读和预测,进而增强对模型预测的信任和理解。
  3. 模型调优:通过分析PDP图,可以发现模型中哪些特征对预测结果有较大影响,从而指导模型的调优和改进。


三、实例展示



「研究思路」:预测心脏疾病发生风险:使用年龄、手术信息和移植信息等特征,构建一个分类模型,预测患者是否会发生心脏事件。


  • 「安装和加载依赖」
library(survival)
library(randomForest)
install.packages("DALEX")
library(DALEX)


  • 「加载数据集和特征选择」
data(heart)
data <- heart[,c("age","surgery","transplant","event")]
data$age <- abs(data$age)


结果展示:


> head(data)
        age surgery transplant event
1 17.155373       0          0     1
2  3.835729       0          0     1
3  6.297057       0          0     0
4  6.297057       0          1     1
5  7.737166       0          0     0
6  7.737166       0          1     1
# 年龄(age)列包含的是心脏病患者的年龄数据,这些年龄数据看起来是浮点数。
# 手术(surgery)列是指是否进行了心脏手术,它的值是0或1,其中0表示未进行手术,而1表示进行了手术。
# 移植(transplant)列表示是否有进行心脏移植,它的值同样是0或1,其中0表示没有进行移植,而1表示进行了移植。
# 事件(event)列是关于心脏疾病事件发生与否的指示变量,它的值是0或1,其中0表示事件未发生,而1表示事件已发生。


  • 「划分训练集和测试集」
# 划分数据集为训练集和测试集
set.seed(123) # 设置随机种子,保证结果的可复现性
train_index <- sample(1:nrow(data), 0.7 * nrow(data)) # 70%的数据作为训练集
train <- data[train_index, ]
test <- data[-train_index, ]


  • 「构建随机森林模型」
library(pROC)
rf <- randomForest(event~., data=train)
# 对测试数据进行分类预测
predictions <- predict(rf, newdata = test,type="prob")
# 计算ROC曲线的参数
roc_obj <- roc(test$event, as.numeric(as.character(predictions)))
plot(roc_obj, col = "blue", main = "ROC Curve", xlab = "False Positive Rate", ylab = "True Positive Rate", print.thres = TRUE, print.auc = TRUE, legacy.axes = TRUE)

640.png


  • 「绘制部分依赖图PDP」
  1. PDP图
# 构建解释器
rf_exp <- DALEX::explain(rf,
                         data = train,
                         y=train$event==1,
                         label = "randomForest")
# 构建PDP对象
pdp_rf <- model_profile(rf_exp, variables = "age")
library(ggplot2)
plot(pdp_rf)

640.png


2. 聚类PDP图


# 按照年龄分为三类
pdp_rf_clust <- model_profile(rf_exp, 
                              variables = "age", 
                              k = 3)
# 绘制聚类PDP图
plot(pdp_rf_clust)

640.png


3. 分组的PDP图

pdp_rf_transplant <- model_profile(rf_exp, 
                               variables = "age", 
                               groups = "transplant")
plot(pdp_rf_transplant)

640.png


4. 不同模型的PDP比较图

lg_model <- glm(event~., data=train,family = "binomial")
# 构建解释器
lg_exp <- DALEX::explain(rf,
                         data = train,
                         y=train$event==1,
                         label = "Logistic")
# 构建Logistic的PDP对象
pdp_lg <- model_profile(lg_exp, variables = "age")
# 绘制模型比较的PDP图
plot(pdp_rf, pdp_lg) +
    ggtitle("Partial-dependence profiles for age for two models")

640.png


四、PDP图形解释小技巧



  • 观察曲线趋势:注意PDP曲线的整体趋势。曲线是否单调递增、单调递减还是具有非线性形状?这可以提供特征与目标变量之间的大致关系。
  • 纵坐标解释:查看纵坐标对应的数值范围和单位。这可以帮助理解模型预测结果的相对大小或概率。
  • 特征贡献程度:观察PDP曲线的幅度和变化。如果曲线的幅度较大,表示该特征对模型预测结果有较大的影响。如果曲线的变化幅度较小,则表示该特征对模型的贡献较低。
  • 直接关系:通过曲线的整体走势来判断特征与目标变量之间的直接关系。如果曲线呈现单调递增或递减的趋势,表示特征与目标变量存在直接关系。
  • 非线性关系:注意曲线是否呈现非线性形状,如U型曲线或倒U型曲线。这可能表明特征与目标变量之间存在非线性关系,可能需要考虑非线性建模方法或特征变换。
  • 交互作用:观察多个特征的PDP曲线是否在某些取值范围内发生交叉或重叠。这可能表示这些特征之间存在交互作用,对目标变量的影响会随着其他特征的变化而变化。
  • 可视化与解释:将PDP图形与模型中的特征重要性结合起来进行解释。除了单独观察PDP图形外,还可以通过对比多个特征的PDP图形来进行更全面的分析。


五、总结



本文演示了如何使用随机森林预测心脏疾病发生风险:使用年龄、手术信息和移植信息等特征,构建一个分类模型,预测患者是否会发生心脏事件。然后使用PDP图形解释随机森林模型和特征。如果想了解如何使用PDP解释特征重要性、交互左右和模型调优,欢迎关注和私信我,我们一起讨论和学习。原创不易,请帮忙点赞再看,谢谢!您的支持是我坚持的最大动力。


*「未经许可,不得以任何方式复制或抄袭本篇文章之部分或全部内容。版权所有,侵权必究。」

目录
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 算法
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
380 1
|
2月前
|
机器学习/深度学习 算法 数据可视化
可解释性机器学习:基于随机森林和Ceteris-paribus的乳腺癌早期诊断研究
可解释性机器学习:基于随机森林和Ceteris-paribus的乳腺癌早期诊断研究
225 1
|
2月前
|
机器学习/深度学习 算法 数据可视化
JAMA | 机器学习中的可解释性:SHAP分析图像复刻与解读
JAMA | 机器学习中的可解释性:SHAP分析图像复刻与解读
857 1
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
模型可解释性在AI和机器学习中至关重要,尤其在金融、医疗和司法等领域。
**模型可解释性在AI和机器学习中至关重要,尤其在金融、医疗和司法等领域。它建立信任、揭示偏见、辅助错误排查和满足法规要求。方法包括使用直观模型、局部解释器(如LIME)、全局工具(如PDP、SHAP)及神经网络和注意力机制的可视化。可解释性结合领域知识和伦理,推动透明智能系统的构建。**
20 0
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
模型可解释性在AI和机器学习中至关重要,尤其在金融、医疗和司法等领域。
【6月更文挑战第28天】模型可解释性在AI和机器学习中至关重要,尤其在金融、医疗和司法等领域。它建立信任、揭示偏见、辅助错误排查和满足法规要求。方法包括使用简单模型、局部解释(如LIME)、全局解释(如PDP、SHAP)、模型可视化和注意力机制。通过跨学科研究,兼顾效率与透明度,打造可信的智能系统。
20 0
|
1月前
|
机器学习/深度学习 数据可视化 Python
机器学习模型的解释性与可信度问题
【6月更文挑战第5天】在数据驱动的时代,机器学习模型的解释性和可信度至关重要。当面对类似黑匣子的复杂模型时,如何解释预测结果成为挑战。科学家通过特征重要性和模型可视化技术来提升解释性。例如,使用&quot;特征重要性&quot;评估各特征对预测的贡献,结合&quot;模型可视化&quot;展示决策过程。提供的Python代码示例展示了如何计算特征重要性并用图形化方式理解模型行为,以增强模型的信任度。
28 1
|
2月前
|
机器学习/深度学习 Python
python 机器学习 sklearn——手把手教你预测心脏病
python 机器学习 sklearn——手把手教你预测心脏病
|
18天前
|
数据采集 机器学习/深度学习 算法
机器学习方法之决策树算法
决策树算法是一种常用的机器学习方法,可以应用于分类和回归任务。通过递归地将数据集划分为更小的子集,从而形成一棵树状的结构模型。每个内部节点代表一个特征的判断,每个分支代表这个特征的某个取值或范围,每个叶节点则表示预测结果。
36 1
|
22天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
170 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
22天前
|
机器学习/深度学习 人工智能 算法
算法金 | 统计学的回归和机器学习中的回归有什么差别?
**摘要:** 统计学回归重在解释,使用线性模型分析小数据集,强调假设检验与解释性。机器学习回归目标预测,处理大数据集,模型复杂多样,关注泛化能力和预测误差。两者在假设、模型、数据量和评估标准上有显著差异,分别适用于解释性研究和预测任务。
44 8
算法金 | 统计学的回归和机器学习中的回归有什么差别?