基于北方苍鹰算法优化LSTM(NGO-LSTM)研究(Matlab代码实现)

简介: 基于北方苍鹰算法优化LSTM(NGO-LSTM)研究(Matlab代码实现)

💥1 概述

苍鹰是森林中肉食性猛禽。视觉敏锐,善于飞翔。白天活动。性甚机警,亦善隐藏。通常单独活动,叫声尖锐洪亮。在空中翱翔时两翅水平伸直,或稍稍向上抬起,偶尔亦伴随着两翅的煽动,但除迁徙期间外,很少在空中翱翔,多隐蔽在森林中树枝间窥视猎物,飞行快而灵活,能利用短圆的翅膀和长的尾羽来调节速度和改变方向、在林中或上或下,或高或低穿行于树丛问,并能加还飞行速度在树林中追捕猎物,有时也在林缘开阔地上空飞行或沿直线滑翔,窥视地面动物活动,一旦发现森林中的鼠类、野兔、雉类、榛鸡、鸠鸽类和其他中小形鸟类的猎物,则迅速俯冲,呈直线追击,用利爪抓捕猎获物。它的体重虽然比等中型猛禽要轻五分之一左右,但速度要快3倍以上,伸出爪子打击猎物时的速度为每秒钟22.5米,所以捕食的特点是猛、准、狠、快,具有较大的杀伤力,凡是力所能及的动物,都要猛扑上去,用一只脚上的利爪刺穿其胸膛,再用另一只脚上的利爪将其腹部剖开,先吃掉鲜嫩的心、肝、肺等内脏部分,再将鲜血淋漓的尸体带回栖息的树上撕裂后啄食。

LSTM是RNN的一种变种,可以有效地解决RNN的梯度爆炸或者消失问题。,如图一所示为LSTM的结构,LSTM网络由一个个的LSTM单元连接而成。


本文基于北方苍鹰算法优化LSTM(NGO-LSTM)研究,并用Matlab代码实现之。

📚2 运行结果

部分代码:

function  [error_test,pererror_test,MAPE_test,RMSE_test,NRMSE_test,MSE_test,R2_test,NSE_test,CA_test,MAE_test,R1_test,accuracy_test,WI_test, PFC_test,  LFC_test ,PPTS_test]= assessment_criteria(test_simu,data_test)
error_test = test_simu-data_test;      % 测试集绝对误差
pererror_test=error_test./data_test;     % 相对误差
MAPE_test = mean(abs(pererror_test))*100;     % 平均绝对百分误差(平均相对误差)
RMSE_test  = sqrt(mean((error_test).^2));   % 均方根误差     RMSE can provide a good measure of model performance for high flows
NRMSE_test=sqrt(sum((error_test).^2))./sqrt(sum((data_test-mean(data_test)).^2)); % 测试集绝对误差
MSE_test=mse(error_test); %均方误差  
R2_test = 1 - (sum(error_test.^2) / sum((test_simu - mean(data_test)).^2));  % 确定性系数(R2-R-Square)  R2<1,R2越接近1预测结果越优
NSE_test=1-sum(power(error_test,2))/sum(power(data_test-mean(data_test),2)); % 纳什系数
CA_test=(MAPE_test/100 + NRMSE_test +(1-NSE_test))/3;  % combined accuracy
% SSE_test=sum(error_test.^2);   %误差平方和SSE_test为
MAE_test=mean(abs(error_test));       %平均绝对误差   
r_test=corrcoef(data_test,test_simu);    %corrcoef计算相关系数矩阵,包括自相关和互相关系数
R1_test=r_test(1,2);  
% accuracy_test=length(find(abs(pererror_test)<0.3))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_1=length(find(abs(pererror_test)<0.05))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_2=length(find(abs(pererror_test)<0.1))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_3=length(find(abs(pererror_test)<0.2))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_4=length(find(abs(pererror_test)<0.3))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_5=length(find(abs(pererror_test)<0.4))/size(data_test,1)*100;  %正确率,相对误差小于20%
accuracy_test_6=length(find(abs(pererror_test)<0.5))/size(data_test,1)*100;  %正确率,相对误差小于20%

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]满建峰,侯磊,杨凯,刘珈铨,张鑫儒,伍星光,贺思宸.基于PSO-LSTM混合模型的天然气管道多用气节点负荷预测研究[J].油气与新能源,2022,34(06):91-100.


🌈4 Matlab代码、数据


相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
2天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
12天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
11天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
9天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
25天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80
|
13天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
13天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
18天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
21天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章