1、简介
本文通过STM32F103C8T6单片机通过HAL库方式对AD8232心率传感器进行数据的读取,并通过串口来进行显示。
2、CubeMX初始化配置
2.1 基础配置
2.1.1 SYS配置
2.1.2 RCC配置
2.2 ADC外设配置
2.3 串口外设配置
2.4 GPIO配置
2.5 项目生成
3、KEIL端程序整合
3.1 串口重映射
具体步骤:stm32(HAL库)使用printf函数打印到串口
3.2 ADC数据采集
首先在adc.c最下方添加ADC采集程序,如下所示:
代码如下:
uint16_t ADC_IN_1(void) //ADC采集程序 { HAL_ADC_Start(&hadc1);//开始ADC采集 HAL_ADC_PollForConversion(&hadc1,500);//等待采集结束 if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC))//读取ADC完成标志位 { return HAL_ADC_GetValue(&hadc1);//读出ADC数值 } return 0; }
接着在adc.h中进行函数声明,如下图所示:
uint16_t ADC_IN_1(void);//ADC采集程序
3.3 主函数代码整合
首先在mian.h进行宏定义,如下所示:
#define LD0 HAL_GPIO_ReadPin(LD__GPIO_Port, LD__Pin) #define LD1 HAL_GPIO_ReadPin(LD_B13_GPIO_Port, LD_B13_Pin)
首先定义变量接受ADC_IN_1()采集数据,如下所示:
uint8_t adc_AD8232;
接着在主函数While循环上方进行ADC采样校准,如下所示:
HAL_ADCEx_Calibration_Start(&hadc1);//ADC采样校准
最后while循环中进行数据打印,如下所示:
while (1) { if(LD0==1||LD1==1){ printf("error"); } else{ adc_AD8232 = ADC_IN_1()/10; printf("%d",adc_AD8232); } HAL_Delay(500); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ }
main.c如下所示:
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ uint8_t adc_AD8232; /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_ADCEx_Calibration_Start(&hadc1);//ADC采样校准 /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if(LD0==1||LD1==1){ printf("error"); } else{ adc_AD8232 = ADC_IN_1()/10; printf("%d",adc_AD8232); } HAL_Delay(500); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
4 硬件连接
VCC ---- 3.3V
GND ---- GND
OUTPUT ---- PA1(ADC引脚)
LD+ ---- PB12(GPIO输入)
LD- ---- PB13(GPIO输入)
SDA ---- PB14(GPIO高电平输出)
注意:
LOD-,LOD+接到身上的三个电极,当接口脱落,这两个口某一个口会变为高电平。
SDN 开启和关闭模块功能,接到GPIO输出口,给它高电平则模块工作,给低电平则不工作。
5 效果展示
传感器接到身上,效果如下:
传感器接口脱落,效果如下:
上文如有错误,恳请各位大佬指正。